Optimal multi-channel data allocation

with flat broadcast per channel

A.A. Bertossi* M.C. Pinotti | S. Ramaprasad * R. Rizzi
M.V.S. Shashanka ¥

Abstract

Broadcast is an efficient and scalable way of transmitting data to an unlimited
number of clients that are listening to a channel. Cyclically broadcasting data over
the channel is a basic scheduling technique, which is known as flat scheduling. When
multiple channels are available, a data allocation technique is needed to assign data to
channels. Partitioning data among channels in an unbalanced way, depending on data
popularities, is an allocation technique known as skewed allocation. In this paper, the
problem of data broadcasting over multiple channels is considered assuming skewed
data allocation to channels and flat data scheduling per channel, with the objective
of minimizing the average waiting time of the clients. Several algorithms, based on
dynamic programming, are presented which provide optimal solutions for N data items

and K channels. Specifically, for data items with uniform lengths, an O(NK log N)

*Department of Computer Science, Mura Anteo Zamboni, 7, University of Bologna, 40127 Bologna,

ITALY, bertossi@cs.unibo.it
tDepartment of Computer Science and Telecommunications, University of Trento, 38050 Povo, Trento,

ITALY, pinotti@science.unitn.it
'Department of Computer Science, Brown University, Providence, RI 02912, TUSA,

shashank@cs.brown.edu
$Department of Computer Science and Telecommunications, University of Trento, 38050 Povo, Trento,

ITALY, rrizzi@science.unitn.it
YDepartment of Cognitive and Neural Systems, Boston University, Boston, MA 02215, USA,

mvss@cns.bu.edu

time algorithm is proposed, which improves over the previously known O(N2K) time
algorithm. When K < 4, faster O(N) time algorithms are exhibited. Moreover, for
data items with non-uniform lengths, it is shown that the problem is N P-hard when
K =2, and strong N P-hard for arbitrary K. In the former case, a pseudo-polynomial
algorithm is discussed, whose time is O(N Z) where Z is the sum of the data lengths.
In the latter case, two algorithms are devised with time exponential in the maximum

data length.

Keywords: Wireless communication, data broadcast, multiple channels, skewed alloca-

tion, flat scheduling, average waiting time, dynamic programming.

1 Introduction

In wireless asymmetric communication, broadcasting is an efficient way of simultaneously
disseminating data to a large number of clients. A server of a base-station continuously
transmits data items from a given set over a wireless channel, while clients passively listen
to the shared channel waiting for their desired item. The server follows a broadcast schedule
for deciding which item of the set has to be transmitted at any time instant. An efficient
broadcast schedule minimizes the client expected delay, that is, the average amount of time
spent by a client before receiving the item he needs. The client expected delay increases
with the size of the set of the data items to be transmitted by the server. Indeed, the client
has to listen to many unwanted data before receiving his own data. The efficiency can be
improved augmenting the server bandwidth, for example, allowing the server to transmit over
multiple disjoint physical channels and therefore defining a shorter schedule for each single
channel. In a multi-channel environment, in addition to a broadcast schedule for each single
channel, an allocation strategy has to be pursued so as to assign data items to channels.
Moreover, the clients can access either a single channel at a time or all available channels
simultaneously. In the former case, if the client can access only one prefixed channel and
can potentially retrieve any available data, then all data items must be replicated over all

channels. Otherwise, data can be partitioned among the channels, thus assigning each item

to only one channel. Index information for data allocation or for broadcast schedule can
help the client to fast locate the desired item on the proper channel.

Several solutions for data allocation and broadcast scheduling have been proposed in
the literature. The proposed solutions depend on the perspectives faced by the research
communities.

Specifically, the networking community faces a version of the problem, known as the
Broadcast Problem, which consists in finding an infinite schedule on a single channel [11, 3,
6, 7]. Such a problem was first introduced in the teletext systems by [2]. Although it is widely
studied (e.g., it can be modeled as a special case of the Maintenance Scheduling Problem and
the Multi-Item Replenishment Problem [3, 6]), its tractability is still under consideration.
Therefore, the emphasis is on finding near optimal schedules for a single channel. Almost all
the proposed solutions follow the square root rule (SRR). Such a rule produces a broadcast
schedule where each data item appears with equally spaced replicas, whose frequency is
proportional to the square root of its popularity and inversely proportional to the square
root of its length [2]. The multi-channel schedule is obtained by distributing in a round robin
fashion the schedule for a single channel [11]. Table 1 summarizes the results known in the
literature for the Broadcast Problem depending on the number of channels and on the item
lengths. For uniform lengths, namely all items of the same length, the problem complexity
is open to our knowledge, while for non-uniform lengths the problem has been shown to be
strong N P-hard.

On the other hand, the database community seeks for a periodic broadcast scheduling
which should be easily indexed [5]. However, the solutions of the networking community
preclude indexing. For the single channel, the obvious schedule that admits index is the
flat one which, fixed an order among the data items, transmits them once at a time, in a
round-robin fashion [1]. In a flat schedule, however, the client expected delay is half of the
schedule period and becomes infeasible for a large period. To decrease the client expected
delay, still preserving indexing, flat schedules on multiple channels can be adopted [9, 10, 13].
However, in such a case the allocation of data to channels becomes critical. For example,
allocating items in a balanced way simply scales the expected delay by a factor equal to

the number of channels. To overcome this drawback, skewed allocations have been proposed

where items are partitioned according to their popularities so that the most requested items
appear in a channel with shorter period [9, 13]. Hence, the resulting problem is slightly
different from the Broadcast Problem since, in order to minimize the client expected delay,
it assumes skewed allocation and flat scheduling. This variant of the problem is easier than
the Broadcast Problem. Indeed, as proved in [13], the optimal solution for uniform lengths
can be found, by dynamic programming, in time polynomial in the number of items and
channels. For non-uniform lengths, the problem tractability was unknown, but a heuristic
has also been proposed in [13].

In this paper, the problem of data broadcasting over multiple channels, with the ob-
jective of minimizing the average waiting time of the clients, is considered under the same
assumptions as in [13], that is skewed allocation to multiple channels and flat scheduling per
channel.

Both the uniform and non-uniform length problems are faced and solved to the optimum,
establishing also their tractability. All the proposed algorithms are based on dynamic pro-
gramming, and provide optimal solutions for N data items and K channels as summarized
in Table 2. Specifically, for uniform lengths, an O(N K log N) time algorithm is proposed,
which improves over the previously known O(N?K) time algorithm by [13]. When K < 4,
faster O(NV) time algorithms are exhibited. Moreover, for non-uniform lengths, it is shown
that the problem is NP-hard when K = 2, and strong N P-hard for arbitrary K. When
K = 2, a pseudo-polynomial time algorithm is discussed which incrementally solves several
Knapsack instances. Its overall time is O(NZ), where Z is the sum of the data lengths. Such
an algorithm is effective when the items have small length. For instance, if each item length
is bounded by a constant, then Z = O(N) and the overall time becomes O(N?). The above
algorithm is as effective as the standard pseudo-polynomial time algorithm for Knapsack,
commonly judged to be extremely effective in practice [8], and allows Fully Polynomial Time
Approximation Schemes (FPTAS) to be obtained as it is for the Knapsack problem. For
arbitrary K, two algorithms are devised with time exponential in the maximum data length
z. The two algorithms require O(K (ITZ_, (L; + 1))?) and O(2*log K(IIZ_,(L; + 1))?) time,
respectively, where L; is the number of items of length 7. When z = 1, the algorithms reduce

to those presented for the uniform case. They are practical as far as z is a small constant.

f channels | item lengths complexity solution references
1 uniform ? 2-approximation [3]
heuristic [11]
0(1) uniform ? PTAS [7]
1 non-uniform | strong NP-hard | 3-approximation [6]
K non-uniform | strong N P-hard heuristic [6, 11]

Table 1: Known results for the Broadcast Problem. PTAS stands for Polynomial Time

Approzimation Scheme.

f channels | item lengths | complexity | solution running time references
1 non-uniform P optimal 0o(1) folklore

<4 uniform P optimal O(N) this paper

K uniform P optimal O(N?K) [13]
O(NKlogN) this paper
2 non-uniform N P-hard optimal O(N2Z) this paper
K non-uniform strong optimal O(K (17, (L; + 1))?) this paper

N P-hard O(2?log K (TT7_, (L; +1)?)
heuristic O((N + K)log K) [13]

Table 2: Known results for the broadcast problem with skewed allocation and flat scheduling.
In the table, Z is the sum of the data lengths, z is the maximum data length, and L; is
the number of data items of length ;. When K > 1, all the algorithms assume a sorting

preprocessing step on the data items, which requires O(N log V) time.

The rest of this paper is so organized. Section 2 gives notations, definitions and the
problem statement. Section 3 efficiently solves the problem assuming uniform lengths and an
arbitrary number of channels. In particular, Subsection 3.1 presents more efficient algorithms
when there are at most four channels. Section 4 studies the non-uniform length case, with
an arbitrary number of channels. Then, Subsection 4.1 discusses the non-uniform problem
with only two channels. Conclusions are offered in Section 5, while the N P-hardness proofs

for the non-uniform case are exhibited in the Appendix.

2 Preliminaries

Consider a set of K identical channels, and a set D = {d;, ds,...,dy} of N data items. Each
item d; is characterized by a probability p; and a length z;, with 1 < < N. The probability
p; represents the demand probability of item d; to be requested by the clients, and it does
not vary along the time. Clearly, Zfil p; = 1. The length z; is an integer number, counting
how many time units (or, ticks) are required to transmit item d; on any channel. When all
data lengths are the same, i.e. z; = z for 1 <17 < N, the lengths are called uniform and are
assumed to be unit, i.e. z = 1. When the data lengths are not the same, the lengths are
said non-uniform.

The items have to be partitioned into K groups G4, ...,Gg. Group G collects the data
items assigned to channel j, with 1 < 7 < K. The cardinality of G; is denoted by Nj,
while the sum of its item lengths is denoted by Z;, i.e. Z; = EdieGj z;. Note that since the
items in G are cyclically broadcast according to a flat schedule, Z; is the schedule period
on channel j. Clearly, in the uniform case Z; = N;, for 1 < j < K. If item d; is assigned
to channel 7, the client expected delay for receiving item d; is half of the period, namely %
Therefore, the average expected delay (AED) over all data items and over all channels is

K

AED = %Z Z; > i (1)

j=1 d;€G;

Given K channels, a set D of N items, where each data item d; comes along with its
probability p; and its integer length z;, the K-Non-Uniform Allocation Problem consists in
partitioning D into K groups (1,...,Gg, so as to minimize the objective function AED
given in Equation 1.

In the special case of equal lengths, the above problem is called K-Uniform Allocation
Problem and the corresponding objective function is derived replacing Z; with N; in Equa-
tion 1.

The rest of this section is devoted to briefly recalling the dynamic programming solution

proposed in [13] for the K-Uniform Allocation Problem.

Lemma 1. [13] Let G, and G, be two groups in an optimal solution. Let d; and dj, be items

with d; € Gy, and d; € Gy. If N, < Nj, then p; > py. Similarly, if p; > pg, then Ny < N;.

6

In other words, the most popular items are allocated to less loaded channels so that they
appear more frequently. The following corollary shows how to exploit Lemma 1 in cleaning

the structure of the K-Uniform Allocation Problem.

Corollary 1. Let dy,ds,...,dy be N items with p; > pr, whenever i < k. Then, there exists
an optimal solution for partitioning them into K groups G1,...,Gk, where each group is

made of consecutive elements.

Hereafter, thus, it is assumed that the items are sorted by their probabilities, and the
optimal solutions will be sought within the class of the segmentations. A segmentation is a
partition G, ...,Gk, such that if d; € G; and d € G; then dj, € G; whenever ¢ < h < k.
A segmentation

d, ... dp,dp 1, dBy By ii1s- - AN
. 7 - vl NG

-

-~ -~

G G2 Gk

will be more compactly denoted by the (K — 1)-tuple

(BlaBQa e 'aBKfl)

of its right borders, where border B; is the index of the last item that belongs to group Gj.
Notice that it is not necessary to specify By, the index of the last item of the last group,
because its value will be N for any solution. From now on, Bx_; will be referred to as the
final border of the solution.

For any two integers n < N and k£ < K, let OPT,; denote an optimal solution for
grouping items di, ...d, into k groups and let opt, ; be its corresponding cost. Let Cj; be
the cost of putting consecutive items dj, . .., dj, into one group, i.e. C;,, = (h—i+1) Zg:i Pq-

Hence, opt, 1 = Ci, for every n. For k > 1, the following recurrence holds:

OPtaj = {lgrr}_i__r,ln_l}{OPte,k_l + Crsin} (2)

The algorithm proposed in [13] is a straightforward dynamic programming implementa-
tion of Recurrence 2.

Indeed, in order to find OPT, , consider the K x N matrix M with My, = opt, . The

entries of M are computed row by row applying Recurrence 2. Clearly, Mk y contains the

7

cost of an optimal solution for the K-Uniform Allocation Problem. In order to actually
construct an optimal partition, a second matrix F' is employed to keep track of the final
borders of segmentations corresponding to entries of M. In Recurrence 2, the value of ¢
which minimizes the right-hand-side is the final border for the solution OPT, ; and is stored
in Fy . Hence, the optimal segmentation is given by OPTy x = (Bi, B, ..., Bx_1) where,
starting from Bx = N, the value of By is equal to Fy1,,,,, for k=1,..., K — 1.

To evaluate the time complexity of the above algorithm, observe that O(N) comparisons
are required to fill every entry of the matrix M, which implies that O(/N?) comparisons are

required to fill a row. Since there are K rows, the complexity of the algorithm is O(N?K).

3 Uniform Lengths

A first improvement on the algorithm proposed in [13] for the K-Uniform Allocation Problem

can be achieved observing that the group cardinalities are bounded.

Lemma 2. Let the items dy,ds, . ..,dy be sorted in increasing order of probabilities. There
exists an optimal solution where these items are partitioned into K groups G1,Gs, . ..,Gk,
such that Ny > | X] and N < [X].

Proof. From Lemma 1 and Corollary 1, there exists an optimal solution such that N; >

Ny > ... > Ng. Hence, the result follows. O

The above result can be used to modify Recurrence 2 achieving a better O(N?log K)
time complexity. Let the N items be sorted by increasing probabilities. The entries of the
matrices M and F' are again filled row by row. However, unlike the previous case, filling
each entry requires fewer comparisons. Precisely, when M ,, is being filled, there are n items
and k groups and the last group contains at most [7] items, by Lemma 2. This implies that
there is a solution where the value of the final border of OPT, j is greater than or equal to
n — [%]. In other words, for the variable £ of Recurrence 2, only the last [7] values of the

indices {1,2,...,n — 1} have to be considered. Then, Recurrence 2 simplifies as:

optn) = }{opte,k_l + Criin} (3)

min
Le{n—[%1,...;n—1

8

To evaluate the time complexity, observe that [}] comparisons are required to calculate
opt, . Hence, to fill all entries of row k in matrix M, ZRNZI[%] = O(NTQ) comparisons are
needed. Thus, the overall time complexity is O(sz1 NTz) = O(N?log K).

A better improvement on the time complexity can be achieved further exploiting the

properties of optimal solutions.

Definition 1. Let di,ds,...,dy be items sorted by decreasing probabilities. An optimal
solution OPTn kg = (B1,Ba, ..., Bk_1) is called left-most optimal and denoted by LMOy
if, for any other optimal solution (B}, B, ..., By 1), it holds Bx 1 < B ;.

The left-most optimal solutions do not need to be unique. However, it is easy to check

that there exists a unique (B, Bs, ..., Bk 1) such that (By, By, ..., B;) is a left-most optimal

solution for partitioning into ¢ + 1 groups the items dy, dy, ...,dp,.,, for every i < K.

Definition 2. A left-most optimal solution (B, Ba, ..., Bik_1) is called strict left-most op-
timal solution, and denoted by SLMOy k, if (B1,Bs,...,B;) is a LMOg,,, i1, for every
1< K.

Lemma 3. Let the items dy,ds, . . ., dy be sorted by decreasing probabilities. Let LMOn_1 x =
(Bl, BQ, PPN BK—I) and OPTNJ(= (Bi, Bé, ey B}(—l)' Then, B}(—l 2 BK—l-

Proof. Let the costs of LMOpy_1,x and OPTy g be, respectively, opty_1,x = optp,_, k-1 +

CBy_,+1,v-1 and opty x = optp,_ k 1+ Cp,_ 11N
Consider the feasible solution for partitioning N items into K channels obtained from

(B1, By, ..., Bk 1) just putting dy into the K-th channel. Then:

optp,._ k-1 +Cr._ y1.n =0pinkx < optp_; k- 1+ CBg_ 141N (4)

K—1
Assuming by contradiction B ; < Bg 1 implies that:
Cp_ +1,8—CB,_ 41,8-1 2 CBg_1+1,8N — CBg_y 41,81 (5)

Subtracting Equation 5 from Equation 4 yields:

optp,. k-1 +Cp,._ y1,n-1 S 0ptpg_; k—1+ CBy_+1,8—1 = OPEN-1,K

K-1°

which contradicts the fact that (B, Bs, ..., Bx_1) is LMOn_1 k. O

In practice, Lemma 3 says that, given the items sorted by decreasing probabilities, build-
ing an optimal solution for N items from an optimal solution for N — 1, the final border
Bk, can only move on the right. Such a property can be easily generalized as follows to
problems of increasing sizes. From now on, let B; denote the j-th border of LMO,, with

k>j>1.

Corollary 2. Let the items di,ds,...,dyx be sorted by decreasing probabilities, and let a <

b<c<N. Then, B , < B% , < B% ;.

Proof. Follows directly from Lemma 3. O

Lemma 3 plays a fundamental role in speeding up the dynamic programming algorithm.
Indeed, it leads to an O(K N log N) time algorithm, as detailed below. The new algorithm
solves subproblems in a dichotomic fashion. Formally, assume that LMO), ;_1 has been
found for every n € [1,...N]|. If the LM O, and LMO,, solutions are also known for some

1 <1 <r <N, then the algorithm can compute LM OHTT p by the following recurrence:

optitr , = min opty_1+C , 6
Pregek ZE{B}C_I,...,B,’;_I}{ Plegr+ Co e} ®)

where B! | and Bl | are, respectively, the final borders of LMO,; and LMO,..

In details, the algorithm is shown in Figure 1. It uses the two matrices M and F', whose
entries are again filled up row by row (Loop 1). A generic row k is filled in stages (Loop
2). Each stage corresponds to a particular value of the variable ¢t (Loop 3). The variable j
corresponds to the index of the entry which is currently being filled in stage . The variables
I (left) and r (right) correspond to the indices of the entries nearest to j which have been
already filled, with [< j < r.

If no entry before j has been already filled, then [= 1, and therefore the final border Fy,
is initialized to 1. If no entry after 7 has been filled, then » = /N, and thus the final border

F} v is initialized to N. To compute the entry j, the variable £ takes all values between Fj

10

Input: N items sorted by decreasing probabilities, and K groups;
begin
Initialize: for ¢ from 1 to N do
M ; < Ci;
Loop 1: for k from 2 to K do
Fro Fp1 < 1; Fpy vt < N;
Loop 2: for ¢t from 1 to [log N| do
Loop 8: for ¢ from 1 to 27! do
j [2"2:1]\71; [+ [;;11]\7]; r 4 [Qt’—;lN]; My, ; < o0;
if i =2"! then r «+ r+1;
Loop 4: for ¢ from Fy,; to Fj, do
if My_10+ Cpy1,5 < My; then
My j < My_10+ Coyrj;
Fy ;< ¢
end

Figure 1: The O(K N log N) time algorithm for the K-Uniform Allocation Problem.

and Fy,. The index ¢ which minimizes the recurrence in Loop 4 is assigned to Fj ;, while
the corresponding minimum value is assigned to Mj, ;.

To show the correctness, consider how a generic row k is filled up. In the first stage
(i.e. t =1), the entry Mk,% is filled and / ranges over all values 1,..., N. By Corollary 2,

observe that to fill an entry M, ; where [< %, one needs to consider only the entries M ,

N

where £ < Fk%. Similarly, to fill an entry M} ; where [> 3, one needs to consider only

the entries Mj_;, where £ > Fk%. In general, one can show that in stage ¢, to compute

the entries Mj; with j = [22N] and 1 < ¢ < 2!, only the entries My_;, must be

considered, where Fy; < ¢ < Fi, and [and r are [2“,7_11 N| and [Qf—_lN |, respectively. Notice

that these entries have been computed in earlier stages. The above process repeats for every
row of the matrix. The algorithm proceeds till the last entry Mg y, the required optimal
cost, is computed. The strict left-most optimal solution SLMOpy g = (B, Ba, ..., Bg_1) is
obtained, where By_; = Fj g, for 1 <k < K and Bg = N.

11

N/4 N/2 3N/4

t=1,2\ u \ \ \ \ \ row k of M
Fk,N/4 Fk,N/Z Fk,3N/4
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ row k—1 of M
t=3 [[T [[IT [T T [T [T | rowkofm
i=1 i=2 i=3 i=4
J=N/8 j=3N/8 j=5N/8 J=7TN/8

Figure 2: Illustration of Loop 2.

As an example, consider Figure 2 which illustrates the execution of Loop 2 with ¢ = 3,
where the entries corresponding to 1 = 1,2, 3,4 of row k£ of matrix M are being computed.
The %—th, %—th, and %—th entries have already been computed in stages 1 and 2. Let F} v,
Fy v and F sv be the final borders corresponding to the entries above. To compute the
entry corresponding to 7 = 1, one only needs to consider entries from Mj_;; to Mk_l,Fk, N
Similarly, for ¢ = 2, only the entries from Mk_l,Fk, N to Mk_l,pk, N are to be examined. For
1 = 3, one examines the entries from Mk_l,pk,% up to Mk_LFk,%M, and, finally, for ¢ = 4, the

entries beyond Mk_l,pk .y are visited.
4

Lemma 4. The total number of comparisons involved in a stage is O(N).

Proof. The whole execution of Loop 3 of Figure 1 corresponds to the execution of a stage
for a particular value of t. The total number of comparisons involved is equal to the sum of
the number of values the variable ¢ takes in Loop 3. This is equal to:

gt—1

Y (Fiy—Fry+1) wherel= F’ - 1N-‘ and r = [LN-‘ (7)

t—1 t—1
=1

12

Unrolling Formula 7, one obtains:

gt—1

Z(Fk[LN _Fk,[i—l N +1) = (Fk[ﬁi_l] —Fro+1)+

- ot—1 ot—1
=1

Theorem 1. The K-Uniform Allocation Problem can be solved in O(K N log N) time.

Proof. From Lemma 4, one stage of Figure 1, corresponding to the execution of Loop 2 for
a particular value of ¢, involves O(N) comparisons. Since Loop 2 runs [log N| times and

Loop 1 is repeated K times, the overall time complexity is O(NK log N). O

3.1 At Most Four Channels

In this subsection, faster algorithms are proposed for the K-Uniform Allocation Problem,
when the number of channels K is less than or equal to 4. All algorithms require O(N) time
to solve the problem and they are based on an efficient incremental technique when there
are two channels. Specifically, when K = 2, adding a new item with lowest (or, highest)
probability to an optimal partial solution can be done in O(1) (resp., O(log N)) time.
When K = 2, Lemma 3 can be further simplified. Indeed, in such a case, the final border

can move at most one position to the right.

Lemma 5. Let the items dy, ds, . . ., dy be sorted by decreasing probabilities. Let LMOpn_1 9 =
(Bl) and LMON,Q = (Bi) Then, Bl S Bi S Bl + 1.

Proof. Let pgj) be the probability of the i-th item dgj) in G, with j = 1,2. Since the items
are sorted by decreasing order, then pgj) > pgj) > .2 pg\];]) Let P, = vazll p(l) and

i

13

P, = ZZle pz@) be, respectively, the sum of the probabilities of the items in the two groups
of LMOy_15. Assume by contradiction that, after adding dy, LMOyy = (B}) = (B + t)
with £ > 1, that is, the final border of the optimal solution moves ¢ positions to the right.

Since the items d?), d§2), e d§2) migrate from G5 into G, then:

t t

i=1 i=1
Similarly, if after adding dy the final border of the optimal solution moves only one position

to the right, the above equation becomes:
costng = (N +1)(Pi +pi”) + No(P = p” + pwy) (9)

Since by hypothesis the solution that moves ¢ positions is the optimal one, opty s < costy o.
Formally:

t
opt s —costyy = (PL—Po)(t—1)+ (N = No+2t—1) Y pP + (t—1)(2p%) —pw) <0 (10)

i=2
Consider now the solution obtained from LMOp_;2 by moving the final border ¢ — 1
positions on the right. Its cost differs from opty_; 2 by
t—1
A=(P—P)(t—1)+ (N1 — Ny+2t—2) > p{? (11)
i=1

which is greater than or equal to 0 from the optimality of LMOn_1 5.
Substituting A in Equation 10, one gets:

t—1

optyp — costyy = A+ Y pP + (Ni = No)(pi? —p?) + (2t = 1)pi® — (t = Dpw ~ (12)

i=2
_ 2 _ (2 : (2) (2) _

Observe that (N7 — No)(p; pi’) > 0since Ny < N, and p;”’ < p;”’, and that (2t
1)p§2) —(t —1)py > 0 because 2t —1 >t — 1 and p?) > pn- Recalling that A > 0 and
Zf;; pZ@) > 0, then optns — costyz > 0 results, thus contradicting the optimality of the

solution with N items where the last border moves ¢ positions on the right. O

As a consequence of the above lemma, computing LMO,,» given LMO,_1, = (B} ')

can be done in constant time just applying the following recurrence:

14

optno = min {Cre+ Co1n} (13)
te{B}1,By 1 +1}

Therefore, the following theorem holds:

Theorem 2. All the solutions LMO,, 2, with 1 < n < N, of the 2-Uniform Allocation

Problem can be computed in O(N) time.

The above result leads to an efficient algorithm for finding the optimal solution LM Oy 3
of the 3-Uniform Allocation Problem. Indeed it is easy to see that the solution for K = 3

can be obtained by combining the solutions for K =2 and K =1 as follows:

optns = , {minN}{optg,g + Crin} (14)

geeey

Corollary 3. The optimal solution LMOn3 of the 3-Uniform Allocation Problem can be

computed in O(N) time.

Following a similar reasoning, the 4-Uniform Allocation Problem can be solved by com-
bining the solutions of two problems with K = 2 for, respectively, the first n items and the
remaining N — n items. Theorem 2 showed how to solve in O(N) time all the problems for
the first n items, with 1 < n < N. In order to apply the same technique to solve in O(N)
time all the problems for the remaining N — n items, a result similar to Lemma 5 is needed
when the new item to be added is that with the greatest probability.

In the rest of this subsection, the items are assumed to be indexed by decreasing prob-
abilities and the notation is slightly modified in order to consider both the above problems.
Specifically, consider the 2-Uniform Allocation Problem. Let opt; ;o denote the cost of the

leftmost optimal solution LMO; ;» for allocating the items d;, ..., d; to two channels.

Lemma 6. Let the items dy, ds, . .., dn be sorted by decreasing probabilities. Let LMOo n o =
(By) and LMO; no = (B}). Then, B} < B;.

Proof. Similar to Lemma 3. U

For the aim of determining the exact index of the final border B] of LM O, y 2, consider

the feasible solutions obtained inserting d; into G; and moving left the border By of LM O3 y 2

15

one position at a time. Continue to move left B; while the cost of the resulting feasible
solution decreases, but stop moving and fix B} = B; as soon as its cost starts increasing.

The following lemma guarantees that the so founded B is optimal.

Lemma 7. Let the items di,ds, ...,dy be sorted by decreasing probabilities. Let S, no =
(B) and S,, yo = (B — 1) be feasible solutions such that their costs are increasing, that is

! " _ . " '
Sn,N2 < Spno- Then, for S o= (B —2), its cost s, no > 8, o

Proof. As in the proof of Lemma 5, let p(j) be the probability of the i-th item dgj) in G,

with j = 1,2, and let P, = ZZN:II pgl) and P, = vazzl pZ@ of Sp.n 2.
By definition, s,x2 = Ny P+ NoPs and sy, = (N = 1) (P, = p§)) + (No + 1) (P +).

Thus s’n,N,2 > sp,n,2 if and only if
(1) P — P

—_ 1
N1>N2—N1+2 (5)

p

Note that Equation 15 holds true since by hypothesis s;, o > sn,n,2. Moreover, rewriting

3 " !/ s s " !/ s :
the above equation for s, v, and s, v, implies that s, v, > s, v, if and only if

(1) PI—P2—2P%3

> 16
lefl]V2 _ Nl + 4 ()
To complete the proof, note that Equation 16 also holds true because
P —P P — Py —2pY
(1) (1) 1 2 1 2 Ny
PRt 2PN > NN 2 T N, - N+ 4
O

As a consequence of the above lemma, given LMO,, y2 = (B), LMO,_; n2 can be

computed just applying the following recurrence:

tr = i C C 17
0ptn_1,n2 ee{ﬂgﬁ{{j?}{ 10+ Cosin} (17)

Note that in Equation 17 a single opt,_; y2 can be found in O(log(B} — n)) time by
applying a binary search in the range [n — 1,..., BY|. However, opt, yo forall1 <n < N

can be found in linear time.

16

Theorem 3. All the solutions LMO, n2, with 1 < n < N, of the 2-Uniform Allocation

Problem can be computed in O(N) time.

Proof. Consider the sequence of solutions LMOy_1 y2 = (B'™"), LMOx_on2 = (B 7?),
...,LMO; y5 = (B}). By Lemma 7 the overall number of comparisons is O(3."_,' (B! —

n=

BI)) = O(N). O

Theorems 2 and 3 yield to an efficient algorithm for finding the optimal solution LM O\ 4

of the 4-Uniform Allocation Problem, by combining two solutions for K = 2:

opti,Na = EE{I?inN}{Optl,e,z +optiing} (18)

geeey

Corollary 4. The optimal solution LMOy 4 of the 4-Uniform Allocation Problem can be
found in O(N) time.

4 Non-Uniform Lengths

Consider now the K-Non-Uniform Allocation Problem for an arbitrary number K of chan-
nels. In contrast to the uniform case, introducing items with different lengths makes the

problem computationally intractable.

Theorem 4. The K-Non-Uniform Allocation Problem is strong N P-hard.

Proof. See the Appendix. O

As a consequence of the above result, there is no pseudo-polynomial time optimal al-
gorithm or fully polynomial time approximation scheme (FPTAS) for solving the K-Non-
Uniform Allocation Problem. However, when the maximum item length z is bounded by
a constant, polynomial time optimal algorithms can be derived where z appears in the ex-
ponent. These algorithms are similar to those presented in Section 3 for the K-Uniform
Allocation Problem.

Recall that the sum of the item lengths in group G; is denoted by Z;. The following

result generalizes Lemma 1.

17

Lemma 8. Let G}, and G; be two groups in an optimal solution. Let d; and dj be items with

zi =z, and d; € Gy, dy € Gj. If Z, < Z;, then p; > py. Similarly, of p; > py, then Z, < Z;.

Proof. Assume by contradiction that Z, < Z; and p; < pg, and swap d; and dj, between the
two groups. Since both items have the same length, Z;, and Z; do not change. Instead the

overall change in cost is:
A = Zn(pr — pi) + Zj(pi — pe) = (Zn — Zj)(px —pi) <0

which is a contradiction. O

Based on the above lemma, some additional notations are introduced. The set D of items
can be viewed as a union of disjoint subsets D; = {d%,dj,...,d} }, 1 < i < z, where D; is
the set of items with length 7, L; is the cardinality of D;, and z is the maximum item length.
Let p represent the probability of item d7, for 1 < j < L.

The following corollary generalizes Corollary 1.

Corollary 5. Let di,dj,...,d} be the L; items of length i with p’, > p, whenever m < n,

fori=1,...,2z. There is an optimal solution for partitioning the items of D into K groups
G1,...,Gg, such that if a < b < c and di,d. € G;, then d} € G;.
Proof. Follows from Lemma 8. O

In the following, the items in each D; are assumed to be sorted by decreasing probabilities,

and optimal solutions will be sought of the form:

1 1 1 1 1 1
disoodpydpy ey
~ N ~ ,

WV TV WV
G1 G2 Gk

2 2 2 2 2 2
B,y Ay dR
- -~ \a ~ e - ~ -’

Gl G2 GK

Z ¥4 Z Z 4 4

\1)"'7 ij)\Bf—kl’"'a Bi?"" B3 _ 4153 ¥N,
v v - ~" -
G G2 Gk

18

where B; is the highest index among all items of length ¢ in group G;. The solution will be
represented as (Bi, By, ..., Bx_1), where each Bj is the z-tuple (B}, B7,...,B}) for 1 < j <
K — 1. From now on, B% | will be referred to as the final border for length i and Bk ; as
the final border vector.

Let OPT,, .., » denote the optimal solution for grouping the Y7 | n; items di, dj, . . ., df, ,

1 <1 < %, into k groups and let opt,, . n,r be its corresponding cost. Let Ci, p,,..1..n, b€

the cost of putting items [; through n;, for all s = 1,2,..., 2, into one group, i.e.
z z ny
Cl1,n1,...,lz,nz = (Z/L(nz - lz + 1)) (Z Zp;)
i=1 i=1 j=l;

Now, consider the recurrence:

OPlny,ny b = lie{lg}li&ni} {Optﬁl,...,éz,k—l + Cﬁl—l—l,nl,...,fz—i—l,nz} (19)
1<i<s

To solve this recurrence by using dynamic programming, consider a (z + 1)-dimensional
matrix M, made of K rows in the first dimension and L; columns in dimension ¢ + 1 for
i=1,...,z. Each entry is represented by a (z + 1)-tuple My, .. »,, where k corresponds to
the row index and n; corresponds to the index of the column in dimension ¢ + 1. The entry
M., ...n. T€Presents the optimal cost for partitioning items d through d;i, fori=1,2,...z2
into k groups. There is also a similar matrix /' where the entry Fy ,, . corresponds to the
final border vector of the solution whose cost is M}, ... n,. The matrix entries are filled row
by row. The optimal solution is given by OPTy, . 1. x = (Bi, B, ..., Bx_1) where, starting
from Bg = (L1, Lo, ..., L,), the value of By is obtained from the value of B,,; and by F as
B, = Fyi1,8,,,, fork=1,..., K—1. A first straightforward algorithm derives directly from

Recurrence 19.

Theorem 5. The K-Non-Uniform Allocation Problem can be solved in O(K [];_,(L; +1)?)

time.

Proof. Since the computation of every entry My, . and Fi,, . requires [[7_ (n;+1) <
II;_,(L; + 1) comparisons, and every row has [[;_, L; entries, the overall time complexity is

O(K TT_,(Li +1)?). O

19

A second algorithm, which generalizes the algorithm derived from Recurrence 3, can be
designed as follows. As before, let z denote the maximum item length. In addition, let
Z = Zf\;l z; denote the sum of all item lengths, and consider a given partition G, ..., Gk.

Lemma 9. Let di,dj,...,d} be the L; items of length i with p}, < pi, whenever m < n, for

i1=1,...,z. There exists an optimal solution where Zyx < [%1

Proof. From Corollary 5, there is an optimal solution where d’,d. € G; implies d} € G,
whenever a > b >c,for1 <i<zand 1< j < K. In other words, items of the same length
allocated to the same group appear in consecutive positions. From Lemma 8, for any two
items d', € Gy, di, € G;, pl,, < p', implies Z;, > Z;. This means that, for any two consecutive

groups G; and G11, Z; > Z;41. Hence, the result holds. O

By the above lemma, an algorithm is derived where, as in the previous algorithm, the
entries of the (z + 1)-dimensional matrices M and F' are filled row by row. However, to
compute the value of the entry My, ,., less than [[;_,(L; + 1) comparisons are required.
Indeed, from Lemma 9, it is known that Z, < (}_;_, in;)/k. Therefore, in Recurrence 19,
only those optimal solutions OPTy, .. 4, x—1 have to be considered for which the sum of the

lengths of the items in channel k satisfies Lemma 9, that is,

3 =Y i -6 < <Zm>/k (20)

i=1 h=l;+1 i=1
In other words, one only needs to consider the values (¢1,...,¢,) € N*, with 0 < ¢; < n;,

satisfying Inequality 20, which can be written as:

=1 1=1

To compute the time complexity, the number of z-tuples (¢1,...,¢,), which satisfy In-

equality 20, has to be counted.

Lemma 10. Let A = ("7, in;)/k. The number of integral points (x1, ..., x,) which satisfy
the inequality Y ;_, ix; < X and such that 0 < z; < n;, is O(’\m [, (n; + 1)), where

mn

Ny = max{ni,...,n,}.

20

Proof. Let the number of integral points satisfying the above condition by denoted by
#(x1,...,2,). Rearranging the inequality > 7, iz; < A, one has

1
< == iz
Ty < m(/\ ;)

i=1

i#Em

which implies that

O

Theorem 6. The K-Non-Uniform Allocation Problem can be solved in O(log K ([T, (Li+
1))2) time.

Proof. The number of integral points which satisfy Inequality 20 is maximal when (z1,...,x,)
= (L1,...,L,). By Lemma 10, the number of operations needed to fill a single entry
s (S, Lifk) [T (Ls + 1)). To fill all the []°_, L; entries of row £,

in row k is O(m

2
O(mzm (37, Li/k) (H;l(Li + 1))) operations are needed. Summing up over all the K

rows, one gets

(> 1w ([T +0)’))

= O(logK), >;_, L; < zL,,, and m > 1, the overall time

o(,ﬁ(

Finally, observing that »_,_

?r'lr—A ,_.

complexity is:

z

O(ZQ(H(Li + 1))210gK)

=1

By Theorems 5 and 6, the K-Non-Uniform Allocation Problem can be solved by two al-
ternative algorithms. When =& o8 K < 22, the former algorithm has the lowest time complexity,
otherwise the latter algorithm is faster. However, both algorithms require a time which is
exponential in the maximum item length z. Therefore, they are practical only when z is a
small costant (for instance z = 2). Observe that there is no hope to devise an algorithm

whose time complexity is not exponential since the problem is strong N P-hard.

21

4.1 Two Channels

Now, consider a special case of the K-Non-Uniform Allocation Problem where the number

of channels is equal to 2.

Theorem 7. The 2-Non-Uniform Allocation Problem is NP-hard.

Proof. See the Appendix. O

Although the 2-Non-Uniform Allocation Problem is N P-hard, it is not N P-hard in the
strong sense. Therefore, it is possible to devise a pseudo-polynomial time algorithm, that is
an algorithm whose time is polynomial in the item lengths.

The problem is to find a solution GG; and G5 such that Z; P, + Z3 P, is minimized, where
P, and P, denote the sum of the demand probabilities of items in (G; and (5, respectively.
From now on, let P = P, + P, and Z = Z; + Z,, and assume, without loss of generality,
that Z; < Z,. Observe that there are only |Z/2| possible values for Z;. If one solves
the 2-Non-Uniform Allocation Problem for a fixed value of Z;, then min{Z; P, + ZoP»} =
min{P,(Z, — Z5)} = max{P,}. Therefore, the problem reduces to finding a subset G; of
{di,dy,...,dy} which maximizes P;.

The basic idea of the algorithm to be proposed is that, once the value of Z; is fixed, then
the 2-Non-Uniform Allocation Problem can be reduced to a particular Knapsack problem [8],
which can be solved in pseudo-polynomial time using dynamic programming.

Consider the 2-Non-Uniform Allocation Problem with N items d1, ds, . .., dy, where each
d; is characterized by its demand probability p; and its length z;, and let Z; be fixed to B.
Then, define a Knapsack problem of capacity B on the same N items di,ds,...,dy, where
each item d; is characterized by a profit p; + Pz; and a weight z;. The problem consists
in finding a subset S of {di,ds,...,dy} subject to the constraint dees 2z, < B so as to
maximize the objective function), . ¢(pr + Pzs).

In the following it is shown that, by construction, the constraint) d,es 7k reaches B
whenever possible, and that in such a case the Knapsack solution S coincides with the
optimal solution Gy for the 2-Non-Uniform Allocation Problem with Z; = B. Indeed, while

maximizing the total profit >, ¢(px + P2g), the quantity >, ¢z is maximized earlier

22

than > d,es Pk, since each increment of 2 contributes by P = Zf\il p;. Hence, if the capacity
B is reachable, then the optimal solution S will have dee g2 = B. In such a case, the
maximum P, =) dpes Pr 1s found, and hence the optimal solutions S and G coincide.

To apply dynamic programming, consider an (N +1) x | Z/2| matrix M, where the entry
M, ; stores the solution for the above Knapsack problem for S; = {ds,...,d;} and capacity
j, with 1 < j < [Z/2] and 0 <4 < N. Formally, M;; = max}_, s(pr + Pz) such that
dees zr < 7, where S C S;.

Starting from M, ; = 0, for 1 < j < |Z/2], the matrix M is filled row by row using the

following recurrence:

M1, = max{M;j, Mi; ..., +Dis1 + Pz} zi1 <J
M, ; Zig1 >]

Whenever the solution for the Knapsack problem completely fills the capacity, i.e., the
sum of the item weights is exactly equal to j, the entry My ; gives the optimal solution for
the 2-Non-Uniform Allocation Problem with Z; = j. Note that it is possible that for certain
values of j, with 1 < j < |Z/2], there is no solution such that the total sum of weights is j.
In such cases, the results are discarded since they are not significant.

As said earlier, to solve the 2-Non-Uniform Allocation Problem, all the values of Z;
between 1 and |Z/2] have to be considered. The solution costs for such problems can be
derived from the last row of M. For this purpose, the sum of the weights corresponding to
M; ; is kept in the entry F;; of an auxiliary matrix F. Then, consider those entries My ;
for which Fy; = j, and compute P, = My ; — jP. The solution of the 2-Non-Uniform
Allocation Problem is maxi<j<|z/2{Mn; — jP : Fyj; = j}, which can be found scanning
the last row of M and F. Once the entry giving the optimal solution is found, it is easy to

list out the items which have been picked up by tracing back the solution path.

Theorem 8. The 2-Non-Uniform Allocation Problem can be solved in O(NZ) time.

Proof. The matrices M and F have (N + 1) x |Z/2] entries. Each entry can be computed
in constant time. Moreover, the maximum on the last row of M costs O(Z) time. Hence,

the time complexity of the dynamic programming algorithm is O(NZ). U

23

The above algorithm is effective when the items have small length. For instance, if each
item length is bounded by a constant, then Z = O(N) and the overall time becomes O(N?).
Such an algorithm is as effective as the standard pseudo-polynomial time algorithm for the
Knapsack problem, and allows Fully Polynomial Time Approximation Schemes (FPTAS) to
be obtained by standard techniques.

5 Conclusions

In this paper, the problem of data broadcasting over multiple channels, with the objective of
minimizing the average waiting time of the clients, was considered under the assumptions of
skewed allocation to multiple channels and flat scheduling per channel. Both the uniform and
non-uniform length problems were solved to the optimum, proposing new algorithms based
on dynamic programming. For uniform lengths, an O(NK log N) time algorithm has been
proposed, which improves over the previously known O(N2K) time algorithm by [13]. When
K < 4, faster O(N) time algorithms were exhibited. Moreover, for non-uniform lengths, it
has been shown that the problem is N P-hard when K = 2, and strong N P-hard for arbitrary
K. When K = 2, a pseudo-polynomial time algorithm has been devised whose overall time
is O(NZ), where Z is the sum of the data lengths. For arbitrary K, two algorithms were
designed whose time comlexity is exponential in the maximum data length z. When z =1,
such algorithms reduce to those presented for the uniform case.

As a direction for further research, one can derive lower bounds on the time complexity
for the uniform case. Moreover, one could try to design O(/V) time algorithms in the uniform

case when the number K of channels is a constant greater than 4.

Appendix

Proof of Theorem 4

In order to prove that the K-Non-Uniform Allocation Problem is strong N P-hard, consider

its corresponding decision problem:

24

K-NON-UNIFORM ALLOCATION

INSTANCE: A set D = {d;,ds,...,dy} of items, a positive integer K, a length z; € Z* and
a demand probability p; € Rt for each d;, with 1 <47 < N, and a bound C € R*.
QUESTION: Can D be partitioned into K groups G4, ..., Gk such that

S (Caca, #)(Caca, 1)) < €7

In the following, it is proved that K-NON-UNIFORM ALLOCATION is strong N P-hard
by exhibiting a polynomial time reduction from 3-PARTITION [4].

3-PARTITION

INSTANCE: A set A of 3m elements, a bound B € Z*, and a size s(a) € Z* for each a € A,
such that s(a) satisfies £ < s(a) < £ and such that 3, , s(a) = mB.

QUESTION: Can A be partitioned into m disjoint sets Si,Ss,...,S,, such that, for all

1<i<m,) o s(a) = B? (Every set S; must contain exactly three elements from A.)

a€S;

Given an instance of 3-PARTITION, the corresponding instance of K-NON-UNIFORM
ALLOCATION is built as follows:

D=A
K=m
C=4B
zi = B + s(a;) i=1,...,3m
i = g 1=1,...,3m

Consider a ‘yes’ instance of 3-PARTITION, i.e. an instance for which there exist m
disjoint subsets of A, each of three elements whose sum is B. Consider the solution of K-
NON-UNIFORM ALLOCATION where the m triplets correspond to the K = m groups.
For each group, the sum of the item lengths is 4B, while the sum of the item probabilities

is % Hence, the total cost of this partitioning is 4B = C'. Therefore, the resulting instance

25

of K-NON-UNIFORM ALLOCATION is a ‘yes’ instance.
Conversely, consider a solution for K-NON-UNIFORM ALLOCATION whose cost is
exactly 4B. Note that 4B is the minimum cost. Indeed, recalling that Z; =) deq; Zis the

overall cost can be written as

where YT 72 > (37T Z;)? follows from the Cauchy-Schwartz inequality in Z,, [12].

Now, it is shown that each group has exactly three items. Indeed, assume by contradiction
that there is a group G, with |G,| < 2, which implies that there is also a group G, with
|G4| > 4. Let Z, and Z, be the sum of item lengths in G, and G, respectively. Since
5 < s(a;) < £ and z = B + s(a;) for every 4, it follows that Z, > 5B and Z, < 3B.
Consider an item d;, € G, and move it to G,. The resulting change in cost is (Z, + z,)* +
(Zg—2n)* — Z) — Z% = 2(Zp — Zy)2n + 22, < 0. Therefore, a solution with a cost smaller
than 4B has been found, which is a contradiction.

Let S; denote ZdieGj s(a;). It remains to be proved that S; = B, for 1 < j < m. The

overall cost can be written as

2 2

because there are exactly three items in each group. Since the above inequality implies that

S S2 < mB? and since by hypothesis 30" s(a;) = > iy Sj = mB, it follows that:

(i) m(mB?) >mZSQ (21)

j=1

On the other hand, using again the Cauchy-Schwartz inequality, one gets

(isj) SmiS? (22)

Combining Equations (21) and (22), the Cauchy-Schwartz inequality becomes

<25> (1-8)" =|1[*- ||S||2—mZS2

26

where S = (S1,...,S,) and 1 = (1,...,1) are vectors in Z,,.

Thus, 1-S = ||1]| - [|S]|, that is, the vectors 1 and S are collinear. Hence, S, = S; for
all 1 < k,j < m. Since 77" S; = mB, then ZdieGj s(a;j) = S;=Bforj=1,...,m.
Therefore, the resulting instance of 3-PARTITION is a ‘yes’ instance. U

Proof of Theorem 7

Consider the decision problem K-NON-UNIFORM ALLOCATION, stated in the proof of
Theorem 4, and let K = 2. To show that 2-NON-UNIFORM ALLOCATION is NP-hard, a
polynomial time reduction from PARTITION [4] is provided:

PARTITION
INSTANCE: A finite set A and a size s(a) € Z* for each a € A.
QUESTION: Is there a subset A" C A such that >, s(a) =3 ,c4_ 4 s(a)?

Let A = {a1,a9,...,a,} and s(a1), s(az),...,s(a,) constitute an arbitrary instance of
PARTITION. The corresponding instance of 2-NON-UNIFORM ALLOCATION is given
by:

D=A
_5 _
C=3 where S = ZaeAs(a)
zi = s(a;) i=1,...,n
pZ:% Z:]‘ﬂ ’n

Consider a ‘yes’ instance of PARTITION, i.e. an instance for which there exists an
A’ C A such that the sums of the sizes of the elements in A’ and A — A’ are equal. Consider
the solution of 2-NON-UNIFORM ALLOCATION, where G; = A’ and Gy = A — A’ are the
two groups. Since the sum of the lengths in each group is 2, the total cost is % (g + 5) =C.

2 2

Hence, a ‘yes’ instance of 2-NON-UNIFORM ALLOCATION results.

27

Conversely, consider a ‘yes’ instance of 2-NON-UNIFORM ALLOCATION whose cost is
at most C. Let Z; and Z, be the sum of the item lengths in the two groups G; and Gs.
Observing that S = Z; 4+ Z, and applying the Cauchy-Schwartz inequality, one gets:

S? 71+ Zy)?
On the other hand, the cost of the solution is:

1 S
(27 <=2 (24
Combining Inequalities 23 and 24 yields:

(Zy + Z5)?

5 =724+ 72

which implies that Z; = Z5. Therefore, A’ = G, and A — A’ = (G4 is a solution of PARTI-
TION. O

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: data management

for asymetric communication environments. In Proc. SIGMOD, May 1995.

[2] M.H. Ammar and J.W. Wong. On the optimality of cyclic transmission in teletext
systems. IEEE Transactions on Communications, 35(11):1159-1170, 1987.

[3] A. Bar-Noy, R. Bhatia, J.S. Naor, and B. Schieber. Minimizing service and operation
costs of periodic scheduling. In Proc. Ninth ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 11-20, 1998.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and

Company, San Francisco, 1979.

[6] T. Imielinski, S. Viswanathan, and B.R. Badrinath. Energy efficient indexing on air. In
Proc. SIGMOD, May 1994.

28

[6] C. Kenyon and N. Schabanel. The data broadcast problem with non-uniform transmis-
sion time. In Proc. Tenth ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
547-556, 1999.

[7] C. Kenyon, N. Schabanel, and N. Young. Polynomial time approximation scheme for
data broadcast. In Proc. ACM Symp. on Theory of Computing (STOC), pages 659-666,
2000.

[8] S. Martello and P. Toth. Knapsack Problems. Wiley, Chichester, 1990.

[9] W.C. Peng and M.S. Chen. Efficient channel allocation tree generation for data broad-

casting in a mobile computing environment. Wireless Networks, 9(2):117-129, 2003.

[10] K.A. Prabhakara, K.A. Hua, and J. Oh. Multi-level multi-channel air cache designs for
broadcasting in a mobile environment. In Proc. Int’l Conf. Data Eng. (ICDE), 2000.

[11] N. Vaidya and S. Hameed. Log time algorithms for scheduling single and multiple
channel data broadcast. In Proc. Third ACM-IEEE Conf. on Mobile Computing and
Networking (MOBICOM), September 1997.

[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 2003.

[13] W.G. Yee, S. Navathe, E. Omiecinski, and C. Jermaine. Efficient data allocation over
multiple channels at broadcast servers. IEEE Transactions on Computers, 51(10):1231-
1236, 2002.

29

