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Decompositions of Non-negative Data magnitudes. Olshausen and Field [15], who use sparse coaling
explain natural image statistics, obtain such a code bydryo
Madhusudana Shashani&tudent Member, IEEE, reduce the entropies of these mixture weights. Field [SYipes
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Non-negativity and sparsity together are desirable pizer

find suitable representations that make hidden structure inthe to hav_e fpr basis decompc_)smon_ te_chnlqu_es, but a statistic
data explicit. In this paper, we present a probabilistic laent vari- Underpinning for such techniques is just as important. &leee
able model that is equivalent to a matrix decomposition of no-  two main contributions of this paper. We first present a getiner
negative data. Data is modeled as histograms of multiple dws latent variable model that provides a statistical framdwir
from an underlying generative process. The model expresseswhich one can extract non-negative bases from data. Insttad
the generative distribution as a mixture of hidden distributions modeling the data directly, the model works on the undeglyin
which capture the latent structure. We extend the model 10 o rative distribution and expresses it as a mixture ehtadis-
incorporate sparsity constraints by using an entropic pria. We tributions which can be interpreted as basis vectors. Theuna
derive algorithms for parameter estimation and show how the : ) . P ) :
model can be applied for unsupervised feature extraction ag Weights with which the basis vectors combine are also madele
supervised classification tasks. as distributions, thus implicitly guaranteeing non-neggtin the
whole model. We then propose algorithms to impose sparsity i
this statistical framework.

Rest of the paper is organized as follows. We present thetlate
variable model in Section Il and describe algorithms foriézy
|. INTRODUCTION the parameters. In Section Ill, we show how sparsity can be

Component-wise decompositions have long enioved ubi i,[Oincorporated in this framework. In section IV, we try to \ddize
P b g enjoy s d understand the workings of the model by using a geometric

use in machine learning problems. Popular approaches such ;
Principal Components Analysis (PCA), Independent Comptne interpretation. We ShO\{\I how the mpdel relates tp NMF anthtate
Analysis (ICA) and Projection Pursuit are frequently enypi class models in Section V. Section VI describes experlme_nts
for various tasks such as feature discovery or object eidrac where we Sh°_W how the moplel can b‘?_us‘?d for_ unsupervised
and their statistical properties have made them indisfid@saols feature extrgctlon and _supe_rwsed _classmcatlon. Finalty end

for machine learning applications. More recently, Nonaiag the paper with conclusions in Section VI.

MatrlxtFe;ctorlzann (NthF; [12]) |r.1t'FroductehdtafneW deg;bl II. LATENT VARIABLE MODEL
property for component decompositions, that of non-neigati . . . .
Non-negativity has proven to be a very valuable property for In t.hls section, we present.theilatent variable model, Fi'@\{l .
researchers working with positive data. Methods not usiog-n equations for parameter estimation and then show that it is

negativity are bound to discover a set of bases that contaﬁﬁu'vale.m fo & basis decomposition in th‘? probability dema -
. . Consider a random process characterized by the probability
negative elements, and then employ cross-cancellationeeet

them in order to approximate the input. Such components wi{?](f) of drawing a feature unif in a given draw. Let the random

. . . L : variable f take values from the sdftl,2,..., F'}. Let us assume
negative elements are hard to interpret in positive dataaifzsn . o . .
9 P P that P(f) is unknown and what one can observe instead is the

and are often used for their statistical properties and oot fr sult of multiple draws from the process. In other words. we
the insight they provide. NMF, which approximates the inpufe P P ' '

2 T . observe featurecounts i.e. the number of times featurg¢ is
as additive combinations of non-negative components, keas b . .
. ; . bserved after repeated draws. We can approximatgaherative
found to provide meaningful components on a variety of dal oo . !
- . . tribution P(f) by using the normalized set of counts.
types such as images [12] and audio magnitude spectra [ . . ;
. . . o Now suppose we also know thB{ f) is comprised of? hidden
However, NMF is not defined in a probabilistic framework. It,. = = L .
. - . T . distributions or latent factors The observation in a given draw
is neither a generative model nor a discriminative modeltared S S
o T T o . might come from any one of th® distributions. The distributions
can pose difficulties in situations where it is used alorgsither

. . i - are selected according to a probability distribution trerhains
models. Also, it does not provide a way to utilize any kindaof . : .
o . . constant across draws in a given experiment. We are allowed t
priori information available about the data.

. . .. run multiple experimen n rve fi r nts f
Another desirable property for component-wise decomjmsit u ultiple: experiments and observe feature counts foh eac

. . xperiment. The probabilities according to which disttidwis
that has spawned an active area of research is the concep . . .
. . . ' . are selected vary from experiment to experiment. Our tagh is
sparsity. It has its roots in the field of sensory coding, &hée

idea of efficient coding has been proposed as a way to extract {;haracterize these hidden distributions.
e : . . ! L he hi istributi - th
intrinsic structure in sensory signals. The goal is to finceaas et us represent the hidden distributions B/|z) - the

basis vectors that span the input space such that only a feWp(r)<]'gbablllty of observing featur¢ conditioned on datent variable

. . . . . . The probability of picking thez-th distribution in then-th
the basis vectors are required to describe a particulat wgaior. “ °p Y P g "
- . ._experiment can be represented By(z). We can now formally
In other words, only a small number of mixture weights with

. . . . . write the model as
which these basis vectors combine to explain the input véztoe

Pn(f) = ZP(f|z)Pn(z), (1)
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all column vectorp, andh,, as matrice® andH respectively,
one can write the model as

@—@ P — WH. 4

v This formulation is similar to matrix decompositions suchk a
PCA, ICA and NMF. We have additional constraints that the
columns of P, W andH, being probability distributions, should
Fig. 1. Graphical model for the random process underlyirg gbneration b€ positive and sum to unity. Thus, the model is equivalent
of a data vector. Circles represent variables, the suriogndox represents to a matrix decomposition which operates in the probability
repeated draws and the arrow represents dependeiicéhe hidden variable, gistripution space. Non-negativity is implicitly guareetl since
f is the feature drawn, antl is the total number of draws. h . e .
we are dealing with probabilities. We want to point out that
the latent variable model can be generalized where the mando
process generates a multidimensional feafurea given draw. In
P(f|z) can be thought of abasis vectorghat are characteristic that case, the above matrix decomposition generalizesensat
to all experiments.P,(z) are mixture weights that signify the decomposition but we shall not explore it further in this @ap
contribution of P(f|z) towards Py, (f). The subscript: indicates  We can write the update equations (2) and (3) also in matrix
that mixture weights change from experiment to experiment. form. Writing the normalization steps separately, we have

The random process generating counts in7#tk& experiment HoV W

can be summarized as Wee = Wp Y i Wy, = — and,
. . . . n (WH)f’rL Zf Wf7

1) Pick a latent variable with probability P, (z). Wl e

2) Pick featuref from the multinomial distributionP(f|z). Hen = Hpny # Hyn = s——, (5)

3) Repeat the above two stepstimes, f ( )fn 2o Hrn
where V' is total number of draws in the experiment. Figure Where A;; represents theéj-th entry of matrix A. The above
shows the graphical model depicting the process. equations are similar to NMF update equations as we shalk poi

Let Vy, represent the feature count of featufein the n- out in Section V.
th experiment. Given these feature counts, one can analyze
and estimate the parameters of the model as we show below. ||| SparRsITY IN THE LATENT VARIABLE MODEL

Notice that any process that generates counts or histogimms di ‘ ional sch h ¢
suitable for analysis by the model. If we have non-negatata,d Sparse coding refers to a representational scheme wheee, o

we can model them as histograms generated from underlyiﬁﬁt of components that may be combined to compose datq, only
distributions. Each data vector can be modeled as the result® small number are combined to represent any particulart.inpu

a separate random experiment. Thus, we can use the model“ﬂth'S, section, we present a br|§f motlvatlon. fgr this cqutcef
analysis of non-negative data. sparsityand show how one can incorporate it in the framework

of the latent variable model.

The idea of sparsity originated from attempts at undersatgnd
A. Parameter Estimation the general information processing strategy employed blog#
ical sensory systems. The assumption is that the goal obgens
gading is to transform the input in such a manner that reduces
the redundancy present among the elements of the inputrstrea
Consider the context of basis decomposition techniques.dBia
vectorv (or the underlying generative distribution in the case of a
latent variable model) is approximated &h where the columns
Pa(elf) = Ln2PU) (2) ©Of W are basis vectors and elemenisof the vectorh are the

>, Pa(2)P(fl2)’ mixture weights. In this context, this goal efficient codingis

Given feature countd’;,,, we aim to estimateP(f|z) and
P, (z). The components are randomly initialized and re-estimat
through iterations as given below, which are derived usimg t
Expectation Maximization (EM) algorithm. The Expectatict)
step can be written as

and the Maximization (M) step can be written as equiva_lent to finding_a set of basis vectors that form; a_cetepl
code (i.e. spans the input space) and results in the mixtaights
S0 VinPa(z|f) ¢ VinPn(z|f) being as statistically independent as possible over ameiseof
T VinPaElf) n(z) = >.>; VinPa(zlf)’  inputs. One way of achieving this, as suggested by Fieldig5],
(3) to have a representational scheme where only a few (out of a
The E-step and M-step equations are alternated until atetion large population) of the basis vectors are required to e@xgay
condition is met. Detailed derivation is shown in suppletakn particular data vector. As Olshausen and Field [15] expldir
material. The EM algorithm guarantees that the above nlickip existence of any statistical dependencies among a set iables
tive updates converge to a local optimum. h; may be discerned whenever the the joint entropy is less than
the sum of the individual entropies, i.@{(h1,ho,...,hr) <
>, H(h;), where’H is the entropy. They explain that a possible
strategy for reducing statistical dependencies is to lotier
We can write the model given by equation (1) in matrix form amdividual entropiesH(k;). Thus, reducing entropies of mixture
p» = Wh,,, wherep,, is a column vector indicatind.(f), h,  weights is equivalent to having a sparse code of basis \&ctor
is a column vector indicating, (z), andW is the F' x R matrix Different metrics have been proposed to measure sparsity.
with the (f, z)-th element corresponding #( f|z). Concatenating These metrics are used as constraints during parameteragisii

P(flz)

B. Latent Variable Model as Basis Decomposition



of the model so that sparsity is enforced. They correspodnverge in 2-5 iterations (see [1]). Brand [2] providesadston

to different cost functions that penalize the objectivection computing the Lambert'sV function.

during estimation. Consider a distributigh on which sparsity =~ The final update equations are given by equation (8), and the

is desired. Some approaches use variants ofZthenxorm of & fixed-point equation-pairs (9), (11) and (10), (12). Detaif the

as the cost function (eg. [9]) while other approaches useuwsr derivation are provided in supplemental material.

approximations of entropy of as the cost function (eg. [15]). Notice that the above update equations reduce to the maximum

In this paper, instead of using approximations for entrogyuse likelihood updates of equations (2) and (3) whemnd 3 are set

entropy itself as a sparsity metric and seek to directly cediti to zero. In most applications, sparsity is usually desinectither

during estimation. P(f|z) or P,(z) and not on both simultaneously. Sparse coding or
We use the concept @ntropic prior which has been used in efficient coding corresponds to imposing sparsity on thetuméx

themaximum entropiiterature (see [10], [19]) to enforce sparsityweights P, (z). Sparsity on the basis vectaoFX f|z) can be useful

Given a probability distributior®, the entropic prior is defined asin certain feature extraction applications as will be shdwynan

P.(0) —aH(0) example in Section VI.
e x e ,

whereH(0) = — >, 6; log ; is the entropy of the distribution and IV. GEOMETRY OF THELATENT VARIABLE MODEL

a is a weighting factor. Positive values af favor distributions The latent variable model as given by eqn. (1) expresses-an
with lower entropies while negative valuesmfavor distributions gimensional distributiorP,, (f) as a mixture ofR F-dimensional
with higher entropies. Imposing this prior with positiseduring  pasis distributionsP(f|2). Being probability distributions, they
maximum a posteriorestimation is a way to minimize entropy gre points in the(F — 1)-dimensional simplex. In case of 3-
which will result in a spars@ distribution. The distributior®  gimensional distributions (a 3-dimensional input spated, gen-
could correspond to the basis functioff|z) or the mixture erative distributions and basis vectors lie within Siandard 2-
weights P, (z) or both. Simplex(the plane defined by points on each axis which are unit
We use the EM algorithm to derive the update equations. Let §tance from the origin) and hence are easy to visualize.
examine the case where balt{f|z) and P (z) have the entropic  To ynderstand and visualize the workings of the model, we
prior. The set of parameters to be estimated is givenAby-  created an artificial data set of 400 3-dimensional distions.
{P(fl2), Pn(z)}. The a priori distribution over the parameters,\e want to emphasize at this point that the input to the model
P(A), corresponds to the entropic priors. We can wi¢P(A), s always a histogram of multiple draws from an underlying
the log- prior, as generative distribution. Every point in the data set we geteel
actually corresponds to a normalized histogram. In otherdsjo
a;;P(ﬂz) log P(fl2) +ﬁ;§P"(z) log Pa(2),  (7) every point corresponds to the result of a different expenim
In this section, we use the terms “data points” and “expenisie
wherea and 8 are parametetsindicating the degree of sparsityinterchangeably.
desired inP(f|z) and P, (z) respectively. As before, we can write  We applied the latent variable model on the artificial detase

the E-step as The model expresses the generative distribution for eveta d
point as a linear combination of the basis vectors where the
_ Pu(2)P(f|2) . . . . .
Po(zlf) = =5+~ (8) mixture weights are positive and sum to unity. Geometngall
. Pa(2)P(f]2) ke . il
this implies that a given generative distribution is expegsas a
The M-step reduces to the equations point within theconvex-hullformed by the basis vectors. This is
illustrated in Figure 2 for 2 and 3 basis vectors. In most izgpl
2on VinPn(2]f) _ , . S
W +a+alog P(f|z) + p- =0, (9) tions of basis decompositions such as NMF or PCA, the number
of basis vectors extracted is far less than the dimensignafi
Ef anPn(Z|f) . . . f
= L B+ Blog Pa(z) +7n =0, (10) the input space. In such@mpact codavhere dimensionality of
Pa(2) representation is reduced, the goal is to represent allikiedy |

where p. and 7, are Lagrange multipliers. The above M-stepnputs with a relatively small number of vectors with minintass
equations are systems of simultaneous transcendentatia@gia in the description of the input space. The left panel of Feglr
for P(f|z) and P,(z). Brand [1] proposes a method to solvevith 2 basis vectors corresponds tocampact codewhile the
such equations using the Lambet function (see [3] for details right panel with 3 basis vectors corresponds tcoaplete code
about this function). It can be shown that f|z) and P,,(z) can One can also choose to have avercomplete codevith more

be estimated as basis vectors than the input dimensionality and imposirsysty
A —¢/a on the mixture weights in this case can give desirable ptigser
P(flz) = —7——F——, (11) as we show below.
W(—gelte=/o /)
5 () — —w/B
Pa(2) = W(—weltT/B/3)’ (12) A. Effect of Number of Basis Vectors

where we have leg represents”,, V;,, Pu(z|f) andw represent The number of basis vectors used in a latent variable model
2 VinPa(2]f). Equations (9) gnd (11) (and the equation paﬁ,ignificantly affects the performance of the model. Figush@ws

(10) and (12)) form a set of fixed-point iterations that tyig that when the number of basis functions is increa§ed from 2
(corresponding to acompact code to 3 (corresponding to a

1o and 8 can also take negative values, in which case the entropies @PMmplete code), thl_? resulti_ng a_pproximation improves feolime
corresponding distributions are increased during esiimat to a plane. All points which lie outside the line can now be
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Fig. 2. lllustration of the latent variable model on 3-diremal distributions. Both panels show distributions esginted within theStandard 2-Simplex
given by {(001), (010), (100)}. 2 Basis Vectors (Left) and 3 Basis Vectors (Right) extddtem 400 data points are shown. The model approximates data
vectors as points lying on the line approximation (left) athim the convex hull (right) formed by the basis vectorssé\shown are two data points (marked
by the magenta and green crosses) and their approximatjotieebmodel (shown by the circles). As one can see, the modglngere accurate as the number
of basis vectors increases fromcampact codef 2 basis vectors to aomplete cod®f 3 basis vectors.

Fig. 3. [lllustration of the effect of number of basis vectorsthe latent variable model applied on 3-dimensional ibistions. Points are represented within
the Standard 2-Simplegiven by {(001), (010), (100)}. The model was applied on the data set of 400 points showngar€&i2 to extract 3, 4, 7, and 10
basis vectors. Each case consisted of 20 repeated runs emdsthiting convex hulls formed by the basis vectors weréqaoas shown in the panels from
left to right. Notice that increasing the number of basisteeenlarges the sizes of convex hulls.

7 Basis Vectors (010) 7 Basis Vectors (010) 7 Basis Vectors (010)
(100) (100)

(100

Sparsity Param = 0.05 Sparsity Param = 0.1 Sparsity Param = 0.3

(001) (001) (001)

Fig. 4. lllustration of the effect of sparsity on the lateririable model applied on 3-dimensional distributions.nBoare represented within ttgtandard
2-Simplexgiven by {(001), (010), (100)}. The latent variable model was applied on data shown in Eiguto extract 7 basis vectors with different values
of the sparsity parameter on the mixture weights. There ®8reepeated runs for a given value of the sparsity paramettithee resulting convex hulls are
plotted as shown. Increasing the sparsity of mixture weighékes the resulting convex hulls more compact.

accurately represented by 3 basis vectors since thewiti@n they are pushed towards the corners of the input simplexadn t
the convex hull. However, as one increases the number o$ basktreme case where entropy of each basis vector is reduced to
functions beyond the input dimensionality, the resultimpwex zero, the basis vectors are given by the corners of the simple
hulls “expand” around the data as shown in Figure 3. ThiselargThe effect of imposing sparsity on the mixture weights to get
set of basis vectors can accurately represent the datadless sparse codef basis vectors is more interesting. Figure 4 shows
characteristic of the distribution of data points. In othesrds, that as the sparsity parameter is increased, convex huhsefb

the new set of basis vectors is less informative about the siztt by the basis vectors get more “compact” around the data. This
Consider the extreme case where we have the set of cornersafresponds to @&parse-overcompleteode comprising a large
the 2-simplex as basis vectors. They accurately reprelerddta number of basis vectors but few of them contributing towards
set but do not provide any information. This is because tlay cexplaining any particular data point. This happens when the
represent not just this dataset lauty other data set with perfect basis vectors themselves are more data-like, or in othedsyor

accuracy. holistic representations of the input space. The idea ofsspa
overcomplete latent variable model has recently been used i
B. Effect of Sparsity audio source separation tasks to obtain better performgi@ie

In Section VI, we show an example where it results in improved

In the latent variable model, sparsity is imposed on a paeic tclassification performance.

parameter by reducing its entropy. It is easy to understaed
effects of sparsifying basis vectors. As the entropy demga



these models isonditional independence multivariate data are

o modeled as belonging to latent classes such that randoablesi
° within a class are independent of one another. In its geffiema,
a latent class model expressed(adimensional distribution as a
o v mixture where each component of the mixture is a product of
one-dimensional marginal distributions. Mathematicatlgan be
(8) P(fin) = 32, P(2)P(f|2)P(n|2) written as
K
P(x)= ZP(Z) H P(zj|z), (13)
O+O—O .
where P(x) is a K-dimensional distribution of the random
Va N variablex = x1,z9, ..., k. Mixture components are indexed by
the latent variable: and P(z;|z) are one-dimensional marginal
(b) P{f,n) = P(n) ¥, P(f|2)P(z|n) distributions. For two-dimensional data in the form of the< v
matrix V, the model can be expressed as
Fig. 5. Graphical models for two-dimensional latent classdei. Circles P(f,n) = Z:P(Z)P(f|z)P(n|z)7 or (14)
represent variables, a box surrounding them indicates hawyntimes they >
should be drawn and arrows indicate dependencez (apresents the hidden P = WSH (15)

variable, f and n are the features drawn in the two dimensions in a given
draw, andV” is the total number of draws. (B)represents the hidden variable,in matrix form. whereF x N matrix P represents the two-
f is the feature drawn in a given draW, is the total number draws for the di . | d', ibuti . r . ith
n-th data vector, andV is the total number of data vectors. imensional distri Utlonp(f’ n), W is an X_ R matrix W'F
the f-th entry of thez-th column representing?(f|z), S is
an R x R diagonal matrix where the-th diagonal element
representsP(z), and H is an R x N matrix with the n-th
. . . element of thex-th row representing®(n|z). Random variables
Let us examine how the model encodes information abogérresponding to both dimensions are considered as featme
the dataset. Information about the dataset is encoded Hy bate treated symmetrically. This is depicted by the graphiuzdel
the basis vectors and the mixture weights. Global charigtits  in Figure 5(a). Convolutive extensions of this model wereerely
are encoded by basis vectors while local characteristiés (Sroposed by [21] and have been applied to various acoustic
individual data points) are encoded by mixture weights.i8asprocessing tasks [22].
vectors correspond to characteristics of the random psotiext In our case, we havéV data vectors of dimensiof’ and we
remained invariant during all the experiments while migturdo not wish to treat both dimensions symmetrically. One cs u

weights correspond to characteristics specific to the @xeerts. 3 different factorizatioh as follows:
Increasing the number of basis vectors in an overcomplete co

means that the basis vectors become less informative abeut t P(fin) = P(n)Y_ P(fl2)P(zln), of (16)
data set. The information is pushed from basis vectors toumgx P — WHSZ 17
weights. In the extreme case where the corners oRt#smplex
correspond to the basis vectors, all the information abbet tin matrix form, whereP represents the two-dimensional distri-
dataset is encoded by the mixture weights and the basisrsectoution P(f, n), W is an F x R matrix with the f-th entry of
themselves provide no information. On the other hand, as ot ~-th column representing(f|z), H is an R x N matrix with
increases sparsity of mixture weights, basis vectors beamwre the z-th entry of then-th column representing?(z|n), and S
data-like. Information about the data set is pushed from tie an N x N diagonal matrix with then-th diagonal element
mixture weights to the basis vectors. In the extreme sparsgiual to P(n). Figure 5(b) shows the graphical model for this
overcomplete case where each data-point is itself a bastsrye factorization. Hofmann [8], motivated by applications ansantic
all information about the data set is coded by the basis v@ct@nalysis of text corpora, introduced this model as Prolsiail

C. Information encoding in the model

and mixture weights provide no information. Latent Semantic Analysis.
The model presented in this paper does not explicitly eséma
V. RELATION TO LATENT CLASSMODELS AND NMF P(n). It was proposed by Raj and Smaragdis [17] in the context of

The latent variable model we have presented is conceptuaigParating speakers from single-channel acoustic rewsdive
related toLatent Class Modeland numerically similar to Non- Consider each data vecter, independently and modeV one-
negative Matrix Factorization. In this section, we deserfw dimensional distributions?,(f) instead of the two-dimensional
the model relates to these techniques. distribution P(f,n). This is equivalent to using the latent class
model of equation (14) on every data vector independentseaff
ing the two dimensions differently helps in clear interptin of

A. Latent Class Models the resulting decomposition as basis vectors and mixtuighise

The model presented in Section Il is a variation oLatent
Class Model Latent class models have been used in the field?Instead, we can us@(f,n) = P(f)>", P(n|2)P(z|f) (or in matrix

of social and behavioral sciences as an analysis method. :Prxn = SpxrWrxrHpxn, where subscripts denote matrix
Izés andS is a diagonal matrix), where basis vectors are over dimansio

models enable one to attribute the observgtionss as _b_eieg a%nd given by rows oH. This is numerically equivalent to using equation
to latent factors (eg. [6], [7], [11]). The main charactdcisof (16) or (17) with the input dimensions transposed.
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Fig. 6. Basis images extracted from tBCL Databaseg(http://cbcl.mit.edu/software-datasets/FaceDataf@l)htising the latent variable model. Panel (c)
shows 49 basis images extracted without using sparsityselhee qualitatively similar to the basis vectors obtaingdMF (not shown). Notice that they
are not entirely parts-like representations. Panels (d)(B)show results of varying. - the sparsity parameter on the basis vectors. Panels (djedrsthow
the effects of varying3 - the sparsity parameter on mixture weights. Parts-likeesgntations are obtained when one imposes sparsity oratie \ectors
(a) or increases entropy of the mixture weights (d). Inérepentropy of basis vectors (b) and decreasing entropy ehiixture weights (e) leads to holistic
face-like representations.

B. Non-negative Matrix Factorization functions ofH [4]. Some approaches such as [16] use a modified
approximation that enforces sparsity. Convergence ptiegeof

some of the approaches are unknown ( [4], [14]). We have
grroposed a method with probabilistic foundations usingogayt

as the sparsity measure. The method we have proposed has good
convergence properties as guaranteed by the EM algorithm. |
addition, our method can be generalized to have multidiieas
features which is equivalent to a tensor decomposition.

Non-negative Matrix Factorization was introduced by [1@] t
find non-negative parts-based representation of datanGivex
N matrix V where each column corresponds to a data vect
NMF approximates it as a product of non-negative matrivés
andH, i.,e. V ~ WH, whereW is a F' x R matrix andH is
a R x N matrix. The columns oW can be thought of abasis
vectorsthat are optimized for the linear approximation bt

The optimal choice of matricew and H are defined by
those non-negative matrices that minimize the reconsbmct VI. EXPERIMENTS
error betweeriv and WH. Different error functions have been
proposed which lead to different update rules (eg. [12]])[13
Shown below are multiplicative update rules derived by [UShg
an error measure similar to the Kullback-Leibler divergenc

In this section, we describe results of applying the latent
variable model on real life data and show how it can be used
for feature extraction and classification tasks.

Hyn <« Hen b, ng/f %(WH)JC n A. Feature Extraction
fWfr .
Lee and Seung [12] applied NMF on tl@BCL databaseof
5 HonVin/(WH) 1 9 [12] app

Wi — Wy, ] , (18) faces and showed that the basis functions extracted halizleta
n ST features that fit well with intuitive notions of parts of faceNe
where 4;; represents the value &th row and thej-th column applied the latent variable model on the database and F&faje
of matrix A. One can see that the EM update equations for tis8ows the results. Equations (2) and (3) were used to update
latent variable model given by equations (5) are similarhe t parameters and data was preprocessed as was done in tmelorigi
above NMF updates. They differ in the normalization factors Study’. Bases extracted by the model are qualitatively similar to
Several authors have noted the shortcomings of standard Nffiese extracted from NMF (see [9], [12]).

and suggested extensions to incorporate sparsity. Mosbagipes - datab f . | . hand
) ; : : ; The CBCL databaseconsists of 2429 frontal view face images, hand-
use variants of a penalty function di during estimation to aligned in a19 x 19 grid. Following [12], the grayscale intensities were first

enforce sparsity orH. The penalty functions include thé; |inearly scaled so that the pixel mean and standard deniatiere equal to
norm [4], [14], a combination ofL; or Ly norms [9] or other 0.25, and then clipped to the range [0, 1].
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Fig. 7. 25 Basis images extracted for class “2” (Top Panets) @ass “3” (Bottom panels) from training data without sigr on mixture weights (Left
Panels, sparsity parameter = 0) and with sparsity on mixteeights (Right Panels, sparsity parameter = 0.2). Basig@®maombine in proportion to the
mixture weights shown to result in the pixel images shown.
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Fig. 8. 25 basis functions learned from training data fos€l&” with increasing sparsity parameters on the mixturggits. The sparsity parameter was
set to (from top-left in clockwise direction) 0, 0.05, 0.2al.5 respectively. Unlike the basis vectors of Figure 6réasing the sparsity parameter of mixture
weights produces basis vectors which are holistic reptasens of the input space instead of parts-like features.



However, the extracted bases are not entirely parts bas
representations as can be seen from the figure. Notice t
compared to holistic representations, parts-based reui@E©ONs
should have lower entropy. We ran experiments on @&CL
Databaseby applying sparsity on the basis vectors to see
it resulted in parts-based representations. Results anensim
Figure 6(a). Decreasing the entropy of basis vectors leads
parts-like representations. Qualitatively similar résutan be
obtained byincreasingthe entropy of mixture weights as shown
in Figure 6(d).

Instead of parts-like representations, one can obtairstioli
representations by imposing sparsity on the mixture weigist
shown by Figure 6(e). Qualitatively similar results can beamed
by increasing the entropy of basis vectors as shown in Fig{oe

B. Classification
We now provide a simple example of handwritten digi

Percentage Error

.
0.1
Sparsity Parameter

0.05

Fig. 9. Results of the classification experiment. The legemolvs number
of basis vectors used. Notice that imposing sparsity alrabgays leads to
better classification performance. In the case of 100 basitoxs, error rate

comes down by almost 50% when a sparsity parameter of 0.3pesed.
t

classification using the latent variable framework and show
how sparsity applied on the mixture weights affects classifi

cation. We used the USPS Handwritten Digits database (from

http://www.cs.toronto.edu/roweis/data.html) which has 1100 ex-
amples for each digit class. We randomly chose 100 examp
from each class and separated them as the test set. The irgnai
examples were used for training.

Training and testing procedures were as follows. Duringnira

ing, separate sets of basis vectors were learned for eash. cIaI‘S1
Figure 7 shows 25 bases images extracted for the digits “8” an

“3” respectively. During testing, basis vectdr§ ( f|z) were fixed
and mixture weightsP*(z) were estimated to obtain mixture
distribution P*(f) = 3=, P*(f|z)P*(2), where the superscript
k indicates the class label. For a given test data veetothis
process was repeated with basis vectors from each classand
likelihood £ = > g vylog P*(f) was computed. The vector
was assigned to the class for which likelihood was the highes
Results are shown in Figure 9. As one can see, imposi
sparsity improves classification performance in almostcafles.
Figure 8 shows four sets of basis vectors learned for cl
“3" with different sparsity values on the mixture weightss A
the sparsity parameter is increased, basis vectors tenceto
holistic representations of the input space. This is coesisvith
improved classification performance - as the representatio
basis vectors get more holistic, the mardikethey become when
compared to bases of other classes. Thus, there is a lesserech
that basis vectors of one class can combine to approximate
input vector in another class, thereby improving perforcgan

VII. CONCLUSIONS

In this paper, we presented a probabilistic generative irtbee
enforces non-negativity implicitly. We showed that it isuelent
to a basis decomposition in the probability space. We shdwed
the model could be extended to incorporate sparsity by gdalin
entropic prior during estimation. We presented a geometaa
that helped us visualize the workings of the model and theceff
of sparsity on its performance. We clarified how the modedtes

to NMF and latent class models. We experimentally verified

the applicability of proposed models for unsupervised ueat
extraction tasks as well as supervised classification tdaksire
research directions include extensions of this work to rhtigee-
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