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APPENDIX I
PARAMETER ESTIMATION FOR LATENT VARIABLE MODEL

In this appendix, we derive update equations for the latent
variable model as described in Section II.

The model is given by equation (1) as reproduced below:

Pn(f) =
X

z

P (f |z)Pn(z).

The parameters to be estimated are P (f |z) and Pn(z). z is the
hidden variable and f is the feature observed at any particular
draw from the distribution Pn(f). The subscript n signifies that
the generative distribution Pn(f) and mixture weights Pn(z) are
specific to a particular data vector. We use a maximum likelihood
formulation of the problem. The standard procedure for maximum
likelihood estimation in latent variable models is the Expectation
Maximization (EM) algorithm. EM alternates two steps: (1) an
expectation (E) step where the a posteriori probabilities of the
latent variables are computed based on the current estimates of the
parameters, and (2) a maximization (M) step, where parameters
are updated such that the expected complete data log-likelihood
is maximized.

For the E-step, we obtain the a posteriori probability for the
latent variable as

Pn(z|f) =
Pn(z)P (f |z)

P

z Pn(z)P (f |z)
. (19)

In the M-step, we maximize the expected complete data log-
likelihood. Let Λ represent the set of parameters of the model, i.e.
Λ = {P (f |z), Pn(z)}. The expected log-likelihood can be written
as

L = Ez̄|f̄ ;Λ log P (f̄ , z̄), (20)

where f̄ and z̄ represent the set of all observations of f and z

in the draws that generated all data vectors. The complete data
likelihood can be written as

P (f̄ , z̄) ∝
Y

j,n

Pn(fj , zj) =
Y

j,n

Pn(zj)P (fj |zj ), (21)

where fj and zj are the observed values of variables f and z in
the j-th draw. Hence, we can write the function L as (ignoring
the constant terms)

L = Ez̄|f̄ ;Λ

X

j,n

log Pn(fj , zj)

=
X

j,n

Ezj |fj ;Λ log Pn(fj , zj)

=
X

j,n

Ezj |fj ;Λ log Pn(zj) +
X

j,n

Ezj |fj ;Λ log P (fj |zj)

=
X

j,n

X

z

P (z|fj) log Pn(z)

+
X

j,n

X

z

P (z|fj) log P (fj |z) (22)

In the above equation, we can change the summation over
draws j to a summation over features f by accounting for how
many times f was observed, i.e. the f -th entry in the observed
data vector1. The expected log-likelihood can now be written as

L =
X

n

X

f

γVfn

X

z

Pn(z|f) log Pn(z)

+
X

n

X

f

γVfn

X

z

Pn(z|f) log P (f |z). (23)

In order to take care of the normalization constraints, the above
equation must be augmented by appropriate Lagrange multipliers
τn and ρz ,

Q = L+
X

n

τn

“

1−
X

z

Pn(z)
”

+
X

z

ρz

“

1−
X

f

P (f |z)
”

(24)

Maximization of Q with respect to Pn(z) and P (f |z) leads to
the following sets of equations

X

f

γVfnPn(z|f) + τnPn(z) = 0, (25)

X

n

γVfnPn(z|f) + ρzP (f |z) = 0. (26)

After eliminating the Lagrange multipliers, we obtain the M-step
re-estimation equations

P (f |z) =

P

n VfnPn(z|f)
P

f

P

n VfnPn(z|f)
,

Pn(z) =

P

f VfnPn(z|f)
P

z

P

f VfnPn(z|f)
. (27)

APPENDIX II
PARAMETER ESTIMATION: SPARSE LATENT VARIABLE MODEL

The model is given by the equation

Pn(f) =
X

z

P (f |z)Pn(z).

The set of parameters to be estimated are P (f |z) and Pn(z)

i.e. Λ = {P (f |z), Pn(z)}. We impose an a priori probability on
the parameters given by

P (Λ) ∝
Y

z

eᾱ
P

f P (f |z) log P (f |z)
Y

n

eβ̄
P

z Pn(z) log Pn(z),

where ᾱ and β̄ are parameters indicating the extent of sparsity de-
sired on P (f |z) and Pn(z) respectively. The log-prior (logarithm
of the above a priori probability) can be written as

ᾱ
X

z

X

f

P (f |z) log P (f |z) + β̄
X

n

X

z

Pn(z) log Pn(z), (28)

We use maximum a posteriori estimation and use the EM algo-
rithm.

For the E-step, we compute the a posteriori probability of the
latent variable as before:

Pn(z|f) =
Pn(z)P (f |z)

P

z Pn(z)P (f |z)
. (29)

In the M-step, instead of maximizing the log-likelihood, we
maximize the log-posterior (the logarithm of the a posteriori

1Since observed data is modeled as a histogram, entries should be integers.
To account for this, we weight the data by an unkown scaling factor γ
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probability of the model parameters). The log-posterior to be
maximized is given by

L = Ez̄|f̄ ;Λ log P (f̄ , z̄) + log P (Λ) (30)

where f̄ and z̄ represent the set of all observations of f and
z in the draws that generated all data vectors. The first term of
equation (30), corresponding to the log-likelihood, can be derived
as shown in the previous appendix and is given by equation (23).
The second term corresponding to the log-prior is given by
equation (28). Hence, we can write the function L as (ignoring
the constant terms)

L =
X

n

X

f

γVfn

X

z

Pn(z|f) log Pn(z)

+
X

n

X

f

γVfn

X

z

Pn(z|f) log P (f |z)

+ᾱ
X

z

X

f

P (f |z) log P (f |z)

+β̄
X

n

X

z

Pn(z) log Pn(z). (31)

Here, γ is a parameter that weights the data while ᾱ and β̄ are
parameters weighting the prior.

In order to take care of the normalization constraints, the above
equation must be augmented by appropriate Lagrange multipliers
τn and ρz ,

Q = L+
X

n

τn

“

1−
X

z

Pn(z)
”

+
X

z

ρz

“

1−
X

f

P (f |z)
”

(32)

Maximization of Q with respect to Pn(z) and P (f |z) leads to
the following sets of equations

P

n VfnPn(z|f)

P (f |z)
+ α + α log P (f |z) + ρz = 0, (33)

P

f VfnPn(z|f)

Pn(z)
+ β + β log Pn(z) + τn = 0, (34)

where α = ᾱ/γ and β = β̄/γ. We have replaced two parameters
weighting the data and prior separately (γ and ᾱ for equation (33),
γ and β̄ for equation (34)) by a single parameter that weights the
prior with respect to the data (α and β in equations (33) and (34)
respectively).

Now, consider solving for Pn(z). Equation (34) can be written
as

ωz

Pn(z)
+ β + β log Pn(z) + τn = 0, (35)

where ωz represents
P

f VfnPn(z|f). The above set of simulta-
neous transcendental equations for Pn(z) can be solved using the
Lambert’s W function ( [3]) as proposed by [1].

Lambert’s W function is an inverse mapping satisfying

W(y)eW(y) = y =⇒ logW(y) + W(y) = log y

As shown in [1], we can set y = ex and work backwards towards
equation (35) as follows,

0 = −W(ex) − logW(ex) + x

=
−1

1/W(ex)
− logW(ex) + x + log q − log q

=
−q

q/W(ex)
+ log q/W(ex) + x − log q

Setting x = 1 + τn/β + log q and q = −ωz/Pn(z), the above
equation simplifies to equation (35):

0 =
ωz/β

−(ωz/β)/W(−ωze1+τn/β/β)
+ log

−ωz/β

W(−ωze1+τn/β/β)

+1 +
τn

β

=
ωz/β

Pn(z)
+ log Pn(z) + 1 +

τn

β

which implies that

P̂n(z) =
−ωz/β

W(−ωze1+τn/β/β)
, (36)

where equations (35) and (36) form a set of fixed-point iterations
for τn, and thus the M-step for finding Pn(z). [1] points out that
these equations typically converge in 2-5 iterations. [2] provides
details about how to compute the lambert’s W function.

We can similarly solve for P (f |z) by solving the set of
transcendental equations given by equation (33) using Lambert’s
W function. It can be shown that it can be estimated as

P̂ (f |z) =
−ξ/α

W(−ξe1+ρz/α/α)
, (37)

where we have let ξ represent
P

n VfnPn(z|f). Equations (33)
and (37) form a set of fixed-point iterations and correspond to
the M-step updates for P (f |z).
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