
User and Entity Behavior Analytics for Enterprise Security

Madhu Shashanka*

Charles Schwab

madhu.shashanka@schwab.com

Min-Yi Shen, Jisheng Wang

Niara, Inc.

{minyishen, jisheng}@niara.com

Abstract—This paper presents an overview of an intelli-
gence platform we have built to address threat hunting and
incident investigation use-cases in the cyber security domain.
Specifically, we focus on User and Entity Behavior Analytics
(UEBA) modules that track and monitor behaviors of users,
IP addresses and devices in an enterprise. Anomalous behavior
is automatically detected using machine learning algorithms
based on Singular Values Decomposition (SVD). Such anoma-
lous behavior indicative of potentially malicious activity is
alerted to analysts with relevant contextual information for
further investigation and action. We provide a detailed descrip-
tion of the models, algorithms and implementation underlying
the module and demonstrate the functionality with empirical
examples.

Keywords-Anomaly Detection; User and Entity Behavior
Analytics; Singular Value Decomposition (SVD); Mahalanobis
Distance

I. INTRODUCTION

A key problem in enterprise security is to detect com-

promised user accounts and insiders within the company

who may have malicious intent (rogue users). The variety of

scenarios in which this can take place and huge variability

in the characteristics of networking environments across

companies makes this problem very complex. However,

assuming that the actions of a compromised or rogue user

are inherently different from his or her everyday job respon-

sibilities makes this problem somewhat simpler to tackle. If

each user’s actions are tracked over time and against actions

of other similar users, one can develop a baseline profile of

the user’s behavior and any deviations from this behavior

can be flagged as potential anomalies that warrant further

investigation. In this paper, we describe the User and Entity

Behavior Analytics module of the Niara Security Analytics

Platform. This module applies machine learning algorithms

on diverse data sources such as network packets and logs

to identify anomalous behavior of users, IP addresses and

devices within an enterprise network.

There is a long history of applying anomaly detection

techniques and machine learning approaches to problems

in computer security. One of the earliest works can be

traced back to 1987 [3]. Despite a large body of work in

academia since then [2] trying to apply anomaly detection

to security problems, very little has found its way to the

* Author was with Niara, Inc. when this work was performed.

industry. There is renewed interest in industry about user

behavior analysis but there is a lot of skepticism among

security practitioners and very few real-world deployments

leverage machine learning [8], [4], [12], [9].

There are several reasons for this disconnect. [4] provides

an excellent summary of incorrect assumptions that are

commonly made about the problem domain (attacks and

malicious activity are rare and anomalous), training data

(attack-free data is available and the norm, simulations are

representative and traffic is static) and operational usability

(false alarms > 1% are acceptable, definition of malicious is

universal and users can interpret anomalies). [12] identifies

further characteristics they say makes security domain not

well-aligned with the requirements of machine learning: very

high cost of errors, lack of training data, ”semantic gap” be-

tween results and their operational interpretation, enormous

variability in input data, and difficulties in conducting sound

evaluation.

These observations resonate with our experience as well.

It is very important to carefully consider the right use-cases

and have a well-defined scope. The most important factor is

making sure one hasn’t made incorrect assumptions about

the data and designing the right features for the problem.

Anomaly detection can only serve as a starting point to help

users identify events of potential significance. It is crucial

to provide operational context on why an event was flagged

as anomalous and other supporting information. The goal

is to make security analysts more efficient and effective

and not just provide a new source of alerts that are not

actionable. Towards this end, we believe we have built a

system that provides rich supporting context and data, all the

way down to the network packets, to help analysts identify

and understand events of importance to the enterprise.

The paper is organized as follows. We first introduce User

and Entity Behavior Analytics (UEBA) in Section II and set

up the problem. Section III presents a detailed description

of the core algorithms underlying the UEBA module. We

then provide an overview of the Niara platform and describe

details of the implementation and deployment in Section IV.

We present experiments and results from a real-world dataset

in Section V, and conclude with final remarks in Section VI.



II. USER AND ENTITY BEHAVIOR ANALYTICS

Behavioral analytics and anomaly detection are very broad

terms. In this section, we set up the problem with a specific

server access behavior use-case as a running example. There

are several other types of UEBA use-cases in the product -

eg., anomalies related to new values not seen in the baseline,

anomalies related to geolocation etc. that are supported by

appropriate machine learning algorithms underneath. But

due to space constraints, we will focus on this particular

use-case.

Consider an important server within an enterprise that

needs to be monitored for actions from compromised ac-

counts or rogue users. We monitor the access patterns of

each user accessing the server. The entities we are interested

in are all users who connect to the server. To detect an

anomaly, we first need to define a baseline against which

to compare. We consider two scenarios:

• Historical baseline: we evaluate a user’s behavior

against his or her own behavior over time in the past.

• Peer baseline: we evaluate the user’s behavior against

the behavior of all peers.

But first, we have to define what we mean by user

behavior. This involves identifying the time-granularity for

analysis (hourly, daily, weekly etc.) and identifying a set of

features to characterize the pattern of access within each

time-period for each user. In this example, we chose to

monitor daily user access behavior and below are a subset

of features that are computed daily for each user-server pair:

• timestamp of first access of the day,

• timestamp of last access for the day,

• duration between last and first access,

• sum total of durations of all eflows of the day,

• number of eflows during the day,

• total upload bytes, and

• total download bytes.

Data collected over time across all the above features

serves as input to the anomaly detection algorithm. For

historical baseline, data vectors for several days in history

for a particular user-server pair is used as baseline data X.

Data for the same user-server pair for the test day serves

as test data vector x. For peer baseline, data vectors for all

users (or users within a particular group) accessing a server

on a particular day is used as baseline X for that day and

each vector within X is scored against that baseline.

III. ALGORITHM OVERVIEW

Our approach is based on the concept of Mahalanobis

distance [7]. We first describe the concept and detail how we

adapt it to create a flexible anomaly detection algorithm that

can be used in real-world scenarios to produce explainable

results.

A. Mahalanobis Distance

Given a set of observations of a variable, what charac-

terizes an anomaly? Intuitively, it is reasonable to think of

an anomaly as an unlikely observation - a low probability

event. One can look at the empirical distribution of the

variable and infer the probability for any observation. If

we assume that the variable has a normal distribution as

a first approximation, low probability events occur at the

tails of the distribution, far away from the mean value. In

other words, the farther out an observation is from the mean

value at the center of the distribution, the lesser the proba-

bility. Intuitively, finding such low probability observations

is equivalent to finding outliers that are farther away in

distance from values that are common. The distance from

the mean can then be used an indicator of the extent or

magnitude of anomaly. This distance, when expressed in

terms of the standard deviation instead of absolute units,

gives the z-score which shows how many standard deviations

away an observation is from the mean value. This allows

one to compare anomalies in variables that have different

distributions.

Mahalanobis distance is a multi-dimensional general-

ization of the z-score. When there are multiple variables

in each observation, the Mahalanobis distance shows how

many standard deviations away an observation is from the

mean value of all observations. It is unit-less and scale-

invariant. Given an observation vector of N variables x =
{x1, . . . , xN} and a set of observations X = {x1, . . . ,xK}
with mean vector µ = {µ1, . . . , µN} and covariance matrix

Σ, the Mahalanobis distance is given by

√

(x− µ)TΣ−1(x− µ). (1)

Mahalanobis Distance in Practice: In real-world scenar-

ios, true values of the mean vector µ and the covariance

matrix Σ are not available and one has to use empirical

estimates from the observations. To compute the distance,

notice from equation 1 that the sample covariance matrix Σ

cannot be ill-conditioned or singular, otherwise the inverse

covariance matrix Σ−1 cannot be computed accurately.

See [5] for a detailed discussion on the numerical stability

of these calculations.

To get around these constraints, we take an alternative

approach that obviates the need for inverse covariance

matrix computation. Let the set of observations be given

by X = {x1, . . . ,xK} with mean vector µ and a vector

σ of standard deviations along each dimension. We first

normalize all variables to have 0 mean and unit variance

to generate

X̄ = {x̄1, . . . , x̄K} where x̄i = (xi − µ)⊖ σ (2)



where ⊖ indicates element-wise division. For notational

convenience, let us represent this z-score transformation as

x̄i = zsc(xi,X), (3)

where the first argument indicates the vector being trans-

formed and the second argument indicates the data whose

mean and variance information is used in the transformation.

We then transform the data using Singular Values Decom-

position (SVD [13]) as

USVT = X̄ (4)

where U and V are orthonormal matrices and S is a matrix

containing singular values as its diagonal elements. The

columns of U indicate orthogonal directions in decreasing

order of variance corresponding to decreasing magnitudes

of singular values in S. In other words, the columns of U

represent axes of a new coordinate system for the data. This

can help in two ways:

• If the matrix X is singular i.e. one or more of the

singular values are zero, then we take only those com-

ponents from U that correspond to non-zero singular

values and compute the projection. Let r denote the

number of components chosen and let si be the i-th
singular value. Then,

r =
∑

all j

I(sj > 0), where I(True) = 1, I(False) = 0.

(5)

• If the matrix is ill-conditioned i.e. one or more of the

singular values have extremely low magnitudes, one can

pick a threshold - say 95% or 99% - and choose only as

many components from U such that the sum of squares

of corresponding singular values (as a percentage of the

total sum) is greater than the threshold. If the threshold

is given by t, 0 < t < 1 then

r = argmin
i

i, such that (

i
∑

j=1

s2j/
∑

all j

s2j ) ≥ t. (6)

We can now take the first r columns of U - let us

denote it by Ū - as the coordinate system we want to work

in. Given an observation vector x, we first preprocess it

the same way the training data X was preprocessed - by

subtracting the sample mean and dividing by the sample

standard deviation. We take the preprocessed vector x̄ and

work with its projection y given by y = ŪT x̄. The

Mahalanobis distance of x from observations in matrix X

can then be calculated as

yT S̄−2y (7)

where S̄ is a diagonal matrix of the first r singular values

from S.

To summarize, all the steps in the algorithm are shown

in table I.

Table I
ALGORITHM

Step 1. Inputs:
Baseline matrix X, test vector x

Step 2. z-score X and preprocess x:

X̄← zsc(X,X), x̄← zsc(x,X)
Step 3. SVD:

X̄→ USVT

Step 4. Number of components:
compute r from Eqn. 5 or 6

Step 5. Reduce to first r components:

U→ Ū, S→ S̄
Step 6. Project to SVD space:

ŪT x̄→ y
Step 7. Compute distance:

yT S̄−2y.

B. Enhanced Mahalanobis Distance

We extend the approach described above in several ways

to make it more flexible and appropriate for our use-cases.

1) One Sided Deviations: A main requirement for most

security use-cases is to find cases where the deviations are

one-sided. For example, in the case of monitoring download

activity from a sensitive internal server, one might not really

care if somebody downloads less than what is normal but

would want to know if the download magnitude is really

large. But Mahalanobis distance will flag deviations from

normal activity equally on both the low and high sides.

We extend the approach to provide an optional parameter

for each of the N variables to specify if deviations have

to be ignored in the positive or negative direction from the

mean. To be more precise, the user specifies an optional

vector of length N containing entries -1, 0 or 1. If the i-th
entry is -1, values of the i-th variable that are less than the

mean will not contribute towards the Mahalanobis distance

computation; if the value is +1, values greater than the mean

will not be considered. If the value is 0, values both above

and below the mean will be considered.

Let v denote this vector of parameters with vi being

the i-th entry. Referring back to Table I, we introduce an

additional step before projecting the preprocessed test data

vector onto the SVD space in Step 6. Let x̄i refer to the i-th
entry of the preprocessed vector x̄. We modify x̄ as follows:

x̄i = 0 if x̄ivi > 0 ∀ i, 1 ≤ i ≤ N. (8)

In this equation, we check if a variable has deviation in a

direction that is not of interest. We then change that entry

to the mean value, which for a z-scored variable is equal to

0. We then follow steps 6 and 7 to compute the distance.

2) Variable Weighting: Another common requirement in

some use-cases is the ability to provide different weights

to different variables. For example, if we want to monitor

users for extended hours of server access but do not care



0 100 200 300 400 500 600 700 800

feature

0

20

40

60

80

100

sc
o
re

0 100 200 300 400 500 600 700 800

feature

0

20

40

60

80

100

sc
o
re

0 100 200 300 400 500 600 700 800

feature

0

20

40

60

80

100

sc
o
re

Figure 1. Illustration of mapping Mahalanobis distance to a confidence score between 0 and 100. In each panel, the blue curve indicates the sigmoid fit
on data points denoted by red stars. The Mahalanobis distance values are on the x-axis and confidence scores are on the y-axis. Writing the data points
as a set of (x, y) tuples, the data points are [(200, 1), (700, 90)] in the left panel, [(100, 1), (400, 40), (700, 90)] in the middle panel, and [(100, 1), (250,
20), (400, 40), (650, 50), (680, 75), (700, 90)]. The data-points can be weighted differently as well. In the third panel, the point (250, 20) has a weight of
0.4 and (650, 50) has a weight of 0.2 as compared to all the other data points with weights of 1.0.

much about their download activity, this extension provides

the ability to have time variables contribute more to the

Mahalanobis distance when compared to the byte-related

variables such as download and upload activity.

Let w be the vector of weights where wi is the weight for

the i-th variable. The idea is to increase the variance of the

i-th variable by a factor wi. To implement this, refer back

to Step 2 in Table I. After x is processed to obtain x̄, we

scale the entries as follows

x̄ = x̄⊙w (9)

where ⊙ is element-wise multiplication.

3) Robustness to Outliers: Computing the Mahalanobis

distance using equation 1 has an important practical short-

coming. Since the true mean µ and Σ are typically unknown,

in practice one uses empirical estimates from the dataset.

However, the estimate of the covariance matrix is very

sensitive to the presence of outliers in the data. There are

heuristic approaches that aim to find a subset of points in

the dataset that are ”pure” and exclude the outliers. It works

iteratively to find points whose covariance matrix has the

smallest determinant [10], [11].

Because of this and other reasons mentioned previously,

we take an alternative approach using SVD to compute the

distance. However, SVD is also sensitive to outliers and

the decomposition obtained from equation 4 can be skewed

because of the presence of outliers in X̄.

We take inspiration from recent work on robust versions

of Principal Component Analysis (PCA, [1]). PCA, closely

related to SVD, is a commonly used technique for dimen-

sionality reduction and data analysis. Given a matrix of noisy

measurements (images, sensor data etc.), PCA is used to find

a low-rank matrix that is used as a proxy for the true values

of the quantities being measured. This works well under

the assumption that the noise is small and the noise errors

follow an independent and identically distributed normal

distribution. This is not the case in many practical situations

and Robust PCA or RPCA [1] was introduced to handle

cases where assumption on the noise matrix is not satisfied.

The intuition of RPCA is simple. Given a measurement

matrix X, RPCA aims to identify additive components

X ≈ A+E (10)

where A is a low-rank matrix and E is a sparse matrix. A

is interpreted as the true values and E is the error matrix.

Several algorithms have been proposed and the idea is to

cast the problem of separating the low-rank data component

from the sparse noise component into a convex optimization

problem. We use the inexact augmented lagrange multiplier

algorithm [6], an iterative method that typically converges

in less than 100 iterations.

Coming back to the problem of outliers skewing SVD, the

goal - similar to goal of the minimum covraince determinant

estimator - is to identify a subset of points in the dataset that

does not contain any outliers. Referring back to Table I,

we introduce an additional step before performing SVD in

Step 3. Let ρ be the number of points we would like in the

subset, this should be greater than half the number of total

points in the entire dataset. We first perform RPCA on the

preprocessed data matrix,

X̄ ≈ X̂+E. (11)

Compute the vector err to be the sum of absolute values

of entries in E, i.e. erri = ‖ei‖1, 1 ≤ i ≤ K corresponding

to the error of the i-th observation vector. We would like

to keep only the first ρ vectors with the lowest errors. Let

err be the ρ-th smallest value in err. We retain x̄i in X̄

if erri ≤ err, otherwise we remove the vector from X̄.

After obtaining the reduced dataset in X̄, we perform Step

2 again before proceeding with the SVD.

4) Explainable Results: An important aspect of any

anomaly detection scheme is to not only identify the

anomaly but also provide information on why the detected

points are anomalous. In our case, we show how much each

variable contributes to the anomaly score.



Given the preprocessed test vector x̄ = {x̄1, . . . , x̄N}, the

contribution of variable j is given by

cj = x̄2
j/

N
∑

i=1

x̄2
i . (12)

5) Mapping the Distance to a Score: Mahalanobis dis-

tance is not bounded from above, the computed distances

can be arbitrarily large. However, one of the product require-

ments is to generate a confidence score for each anomaly that

is bounded in the interval [0, 100]. We map the mahalanobis

distance into a confidence score by using a sigmoid function.

If m is the distance, the final score is given by

score =
100

1 + e−k(m−m0)
, (13)

where k is the steepness of the curve and m0 is the distance

for which the score is 50.

Fixing values for the parameters k and m0 will specify

the exact mapping from the Mahalanobis distance to a

confidence score. We compute the parameters empirically

by using a linear fit given desired score for at least two

different values of m. We fit the equation below:

s = −k×m+k×m0, where s = log
100− score

score
. (14)

It can be easily verified that the value for k is given by the

negative slope of the fit and the value for mo is given by

intercept/k. Figure III-B shows example results of this

process.

6) Learning from User Feedback: We have also imple-

mented an optional feature where the algorithm can take

feedback from users. For a given test vector, a user can

provide feedback that the computed anomaly score is too

high (in case of a false positive) or too low.

Handling false positives can be easily implemented with-

out making changes to the algorithm. In the algorithm as

mentioned in section III-B3, we make sure the training set

does not contain any outliers or anomalies. When a user

marks a test vector that is scored as an anomaly by the

algorithm, it means that the test vector can be considered

part of the baseline. In other words, we can use this test

vector marked as a false positive as part of the training

data. The idea is to maintain a list of false positive data

and include them during training to make sure similar data

vectors don’t raise anomalies in the future. However, this

approach cannot extend to the case where a user thinks the

generated anomaly score is too low.

To adapt to both kinds of feedback (anomaly score too

high or too low), we look at the contribution from each

variable to the score, and increase or decrease the weights

of each variable in proportion to the corresponding contri-

butions. For example, if a user marks a test vector as a

false positive with a score that is too high, the intuition is

Figure 2. Overview of the Niara Security Analytics Platform

to look at the variables that contribute the most and reduce

their weights. Similar vectors in future sessions will have

lower scores because of the lowered weights on the high-

contribution variables.

Let δ be a tunable parameter between 0 and 1 that

indicates to what extent we want the weights changed based

on a single feedback. Let f indicate user’s feedback - it

takes value +1 if the user thinks the score is too low and

-1 if the user thinks the score is too high. We modify the

weight vector w as follows,

wnew = w + fδc. (15)

To make sure the weights don’t grow too high or too low, it

is a good idea to have limits on the maximum and minimum

values.

IV. SOLUTION OVERVIEW AND IMPLEMENTATION

In this section, we provide an overview of the Niara plat-

form and describe details of the UEBA module architecture

and implementation.

A. Niara Security Analytics Platform

The Niara Platform is an enterprise security analytics

solution aimed at threat hunting, incident investigation,

insider threat detection and related use-cases. The goal is

to provide security analysts automated detection of attacks

that have bypassed perimeter defenses and are on the

inside. Activities such as command and control, internal

reconnaissance, lateral spread, privilege escalation and

exfiltration indicative of potentially malicious activity are

detected automatically. Figure 2 provides an overview of

the conceptual architecture of the platform.



Entity360: The core idea underlying the platform is

the concept of an Entity360. All information related to

a particular entity - a user, an IP address, or a device

- from a variety of data sources are brought together to

generate a comprehensive risk profile in the entity360.

It provides a coherent visual representation of all the

enriched security information that is associated with

an entity. It is meant to provide one-click access to

information that security analysts would otherwise spend

hours or days searching across multiple data silos and

assembling as part of any investigation and response effort.

Synthesizing entity360’s is a multi-step process - the first

step is bringing information from a variety of data sources

together in a data fusion step, and a variety of analytics

modules are then applied to extract specific security insights.

Data Fusion: The platform can ingest raw data from a

variety of network and security data sources (eg., packets,

flows, logs, files, alerts, threat feeds). During data fusion,

raw data is correlated to make it more meaningful (eg.,

associating IP addresses with users) and distilled into

summaries that provide rich context (eg., authentication

and device usage histories, port-protocol relationships).

The platform is built on a robust big data architecture that

can handle varying velocities in the arrival of data from

different sources at scale.

Analytics: Analytics modules use machine learning

models - both supervised and unsupervised - to detect

and identify events of importance to the security analyst.

These modules contribute to an entity’s overall risk score

which is tracked over time. There are several analytics

modules in the platform but they can be broadly grouped

into two categories - behavioral analytics and what we have

termed as discrete analytics. Discrete analytics modules are

mostly based on supervised machine learning algorithms

and are geared towards detecting and identifying the

known unknowns. Examples include identifying malware

infections, suspicious executable files etc. On the other

hand, behavioral analytics modules are mostly based on

unsupervised machine learning algorithms to address the

more complex problem of detecting the unknown unknowns

such as malicious or compromised insiders.

Events and Alerts: When an analytics module success-

fully detects malicious activity or an anomaly, it triggers an

event. Each event is associated with one or more entities and

comes with two scores - (i) a severity score that is defined

by the security analyst to indicate the business context and

importance, and (ii) a confidence score generated by the

module that can be thought of as a probability that the

module is correct in its detection. Values for both scores

are in the range from 0 to 100. For example, an analyst may

choose to have a severity of 100 for all behavioral events of

Figure 3. Generic Architecture for UEBA

the CEO of the company while choosing to set it to a low

score of 40 for events related to a non-critical server that

does not connect to any other machines. Similarly, when

a module is sure about a malware detection, the generated

confidence score will be closer to 100 and when it is not

certain, it may still trigger an event but will a low score.

Events with both severity and confidence scores greater than

60 are elevated as alerts. All events and alerts for an entity

are brought together in its entity360 and the severity and

confidence scores are combined to generate a unified alert

threat score.

B. UEBA Implementation

Figure 3 summarizes the architecture of the UEBA mod-

ule. The architecture supports other types of UEBA use-

cases but we will focus on server-access behavior anomaly

detection based on SVD. An analyst will first have to

configure the use-case by specifying (a) the type of entities

to focus on - users, IP addresses or devices, (b) the IP

address(es) or hostname(s) of the internal server of interest,

(c) the baselines to be used, and optionally (d) any other

filters on data. An example use-case could be to monitor

accesses to the internal finance server (server of interest)

by users (entity) within the finance group (additional data

filter). In addition, the analyst will define the features to be

used, we presented example features in Section II. We omit

details of the use-case configuration workflow as it is out of

scope for this paper.

The entire workflow can be broken down into four distinct

phases. We will describe each one of them below.

1) Data Preparation - In the first step, the workflow ob-

tains relevant data from all the data sources. It applies

all the defined filters, groups data by identified entities

and prepares data for the next feature extraction stage.

2) Feature Extraction - In this step, data is obtsained

from all the relevant fields, grouped by each entity

per day, and the configured features are computed and

stored.



Figure 4. Distribution of Confidence Scores. The x-axis denotes bins of
confidence scores and y-axis shows the number of events with confidence
scores in the corresponding bins.

3) Behavior Profiling - This is the step where for

each entity, the extracted features are grouped into

configured baselines and the machine learning model

(SVD) is applied to generate a behavior profile for that

particular entity.

4) Anomaly Detection - In the final step, the test feature

values are scored against the behavior profile and an

event is generated with an associated confidence score.

The entire workflow runs once every day on Apache Spark.

V. EXPERIMENTS AND RESULTS

The UEBA module has been deployed at multiple cus-

tomer sites as part of the Niara platform. In this section,

we present results on a real-world dataset of network traffic

collected within the Niara internal network over a span

of a 3 months from Nov 2015 through Jan 2016. The

entire dataset comprises 1,315,895,522 (1.3 Billion) raw data

records where each record corresponds to a network layer-4

conversation.

We present results on a specific server access behavior

use-case. We tracked accesses to our internal Jenkins server

by specifying the server’s IP and port (8080). During the

3-month period, there were 362,791 conversations in total

originating from various internal IP addresses to the Jenkins

server. We configured the UEBA module to detect anomalies

for this use-case using both peer and historical baselines.

There were 64 events that were generated out of which 39

were alerts with a confidence score greater than 60. Table II

shows the number of events and alerts by baseline type, and

Figure 4 shows the distribution of confidence scores.

Table II
NUMBER OF EVENTS AND ALERTS BY BASELINE TYPE

Events Alerts

History 12 03
Peer 52 36

Figure V shows an event and an alert generated for

the same admin user accessing the Jenkins server on Jan

14th. This example demonstrates the value of scoring an

entitity’s behavior against both historical and peer baselines.

While based on the activity of peers, the admin’s actions

Figure 5. The two panels above show visualizations of features for an
alert (top, confidence score 96) and an event (bottom, confidence score
16) generated for the same user on Jan 14th. In both panels, the first row
shows features of the user that was alerted on that day while the remaining
rows show features of the baselines. In the top panel, peers were used as
a baseline while the user’s own historical features were used in the bottom
panel. Notice that compared to peers, the behavior was anomalous while
compared to the user’s own past behavior, Jan 14th was a normal day.
The user was an admin of the Jenkins server and the deviation in behavior
compared to peers was expected. The “download bytes” feature is the most
contributing feature for this anomaly.

Figure 6. The two panels above show alerts for an admin (top, confidence
score 98, peer baseline) and a user (bottom, confidence score 76, historical
baseline), where the most contributing feature was the first or last time of
access during the day.

look anomalous but based on the historical behavior, it was

beningn behavior. The anomaly scores generated are based

on values of all features but the primary feature contributor

is ”download bytes.” Figure V shows two alerts where the

primary feature contributors were related to the time of

access.



Discussion

There are several issues that one needs to pay particular

attention to during deployment. Below, we describe a few

of them in no particular order.

Size of training set: For results to be meaningful, the

absolute minimum number of records necessary for training

should be atleast the number of features used. But we are

also limited by practical deployment constraints where we

cannot wait for weeks to gather training datasets. With seven

features in our current implementation, we do not generate

any anomaly score until we have atleast 7 training records.

For historical anomalies, we start with the previous 7 days

and use upto the previous 14 days of data for training. For

the current implementation of peer anomalies, there is no

upper bound on the number of records in the training set.

Impact of variance in training data: If values for a

particular feature are too consistent in the training data, the

variance will be very small and small deviations can result

in extremely high anomaly scores. The anomaly score value

should always be looked at in the context of the training

data. For example, if an employee begins the day at the

same exact time every day and comes in a minute late on the

scoring day, it will raise an anomaly with a very high score.

A corollary is that the units used to express features can be

very important. During tuning and experimentation, we had

initially expressed first and last access times in minutes. In

certain cases, this artificially resulted in low variance in the

training dataset since we had lost the fidelity at the level of

seconds and generated a few false positive events. We then

started using seconds to express these two features.

Feature Weighting: Extreme care should be taken while

assiging different weights to different features. Unless the

use-case demands it, all features should be given equal

weights. In our examples, we provided higher weights to the

”time-of-access” features compared to the ”bytes” features.

The values for first and last access times of the day are

always between 0 and 24 hours as opposed to download

or upload bytes which exhibit much higher variances. As

a result, high variances in the byte related features could

overwhelm deviations in access times that were of interest to

our internal security analysts. We cannot disclose the weight

values as the information is proprietary.

VI. CONCLUSIONS

In this paper, we presented the User and Entity Behavior

Analytics (UEBA) module of the Niara Security Analytics

Platform. We provided an overview of the solution and

presented details of the SVD-based algorithms to detect

anomalies of interest to security analysts. We described

the architecture and implementation details and showed the

effectiveness of the solution with example empirical results

on real-world data. The solution is currently deployed at

multiple customer sites and has provided increased visibililty

and insight to security teams about their networks and

users. In terms of follow-on work, we have generalized

the deployment architecture to enable customers to self

configure new use-cases on arbitraray logs of their choice.

We have also enhanced the module with more machine

learning models and validated them on real-world datasets.

We will report these developments in future papers.

VII. ACKNOWLEDGMENTS

We would like to thank Prof. Ankur Teredesai from

the University of Washington for reviewing the draft and

providing valuable feedback.

REFERENCES

[1] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Jrnl. of the ACM, 58(3), 2011.

[2] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Computing Surveys, Sep 2009.

[3] D. Denning. An intrusion detection model. IEEE Trans. on
Software Engg., 13(2), 1987.

[4] C. Gates and C. Taylor. Challenging the anomaly detection
paradigm: A provocative discussion. In Proceedings of the
2006 Workshop on New Security Paradigms, NSPW ’06,
pages 21–29, New York, NY, USA, 2007. ACM.

[5] A. Ker. Stability of the mahalanobis distance: A technical
note. Technical Report CS-RR-10-20, Oxford University
Computing Laboratory, 2010.

[6] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange
multiplier method for exact recovery of corrupted low-rank
matrices. Technical Report UILU-ENG-09-2214, UIUC,
2010.

[7] P. Mahalanobis. On the Generalised Distance in Statistics.
In Proceedings of the National Institute of Science, India,
volume 2, pages 49–55, 1936.

[8] A. Pinto. Secure because math: A deep-dive on machine
learning based monitoring. In Black Hat Briefings USA, 2014.

[9] K. Rieck. Computer security and machine learning: Worst
enemies or best friends? In SysSec Workshop (SysSec), 2011
First, pages 107–110. IEEE, 2011.

[10] P. Rousseeuw. Least median of squares regression. Jrnl. of
Am. Stat. Asscn., 1984.

[11] P. Rousseeuw and K. Van Driessen. A fast algorithm for the
minimum covariance determinant estimator. In Technomet-
rics, volume 41, Aug 1999.

[12] R. Sommer and V. Paxson. Outside the closed world: On
using machine learning for network intrusion detection. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages
305–316. IEEE, 2010.

[13] G. Stewart. On the early history of the singular value
decomposition. SIAM Review, 35-4:551–566, Dec 1993.


