User and Entity Behavior Analytics for Enterprise Security

Madhu Shashanka*
Charles Schwab
madhu.shashanka @ schwab.com

Abstract—This paper presents an overview of an intelli-
gence platform we have built to address threat hunting and
incident investigation use-cases in the cyber security domain.
Specifically, we focus on User and Entity Behavior Analytics
(UEBA) modules that track and monitor behaviors of users,
IP addresses and devices in an enterprise. Anomalous behavior
is automatically detected using machine learning algorithms
based on Singular Values Decomposition (SVD). Such anoma-
lous behavior indicative of potentially malicious activity is
alerted to analysts with relevant contextual information for
further investigation and action. We provide a detailed descrip-
tion of the models, algorithms and implementation underlying
the module and demonstrate the functionality with empirical
examples.

Keywords-Anomaly Detection; User and Entity Behavior
Analytics; Singular Value Decomposition (SVD); Mahalanobis
Distance

I. INTRODUCTION

A key problem in enterprise security is to detect com-
promised user accounts and insiders within the company
who may have malicious intent (rogue users). The variety of
scenarios in which this can take place and huge variability
in the characteristics of networking environments across
companies makes this problem very complex. However,
assuming that the actions of a compromised or rogue user
are inherently different from his or her everyday job respon-
sibilities makes this problem somewhat simpler to tackle. If
each user’s actions are tracked over time and against actions
of other similar users, one can develop a baseline profile of
the user’s behavior and any deviations from this behavior
can be flagged as potential anomalies that warrant further
investigation. In this paper, we describe the User and Entity
Behavior Analytics module of the Niara Security Analytics
Platform. This module applies machine learning algorithms
on diverse data sources such as network packets and logs
to identify anomalous behavior of users, IP addresses and
devices within an enterprise network.

There is a long history of applying anomaly detection
techniques and machine learning approaches to problems
in computer security. One of the earliest works can be
traced back to 1987 [3]. Despite a large body of work in
academia since then [2] trying to apply anomaly detection
to security problems, very little has found its way to the

* Author was with Niara, Inc. when this work was performed.

Min-Yi Shen, Jisheng Wang
Niara, Inc.
{minyishen, jisheng}@uniara.com

industry. There is renewed interest in industry about user
behavior analysis but there is a lot of skepticism among
security practitioners and very few real-world deployments
leverage machine learning [8], [4], [12], [9].

There are several reasons for this disconnect. [4] provides
an excellent summary of incorrect assumptions that are
commonly made about the problem domain (attacks and
malicious activity are rare and anomalous), training data
(attack-free data is available and the norm, simulations are
representative and traffic is static) and operational usability
(false alarms > 1% are acceptable, definition of malicious is
universal and users can interpret anomalies). [12] identifies
further characteristics they say makes security domain not
well-aligned with the requirements of machine learning: very
high cost of errors, lack of training data, ”semantic gap” be-
tween results and their operational interpretation, enormous
variability in input data, and difficulties in conducting sound
evaluation.

These observations resonate with our experience as well.
It is very important to carefully consider the right use-cases
and have a well-defined scope. The most important factor is
making sure one hasn’t made incorrect assumptions about
the data and designing the right features for the problem.
Anomaly detection can only serve as a starting point to help
users identify events of potential significance. It is crucial
to provide operational context on why an event was flagged
as anomalous and other supporting information. The goal
is to make security analysts more efficient and effective
and not just provide a new source of alerts that are not
actionable. Towards this end, we believe we have built a
system that provides rich supporting context and data, all the
way down to the network packets, to help analysts identify
and understand events of importance to the enterprise.

The paper is organized as follows. We first introduce User
and Entity Behavior Analytics (UEBA) in Section II and set
up the problem. Section III presents a detailed description
of the core algorithms underlying the UEBA module. We
then provide an overview of the Niara platform and describe
details of the implementation and deployment in Section I'V.
We present experiments and results from a real-world dataset
in Section V, and conclude with final remarks in Section VI.

II. USER AND ENTITY BEHAVIOR ANALYTICS

Behavioral analytics and anomaly detection are very broad
terms. In this section, we set up the problem with a specific
server access behavior use-case as a running example. There
are several other types of UEBA use-cases in the product -
eg., anomalies related to new values not seen in the baseline,
anomalies related to geolocation etc. that are supported by
appropriate machine learning algorithms underneath. But
due to space constraints, we will focus on this particular
use-case.

Consider an important server within an enterprise that
needs to be monitored for actions from compromised ac-
counts or rogue users. We monitor the access patterns of
each user accessing the server. The entities we are interested
in are all users who connect to the server. To detect an
anomaly, we first need to define a baseline against which
to compare. We consider two scenarios:

o Historical baseline: we evaluate a user’s behavior
against his or her own behavior over time in the past.

o Peer baseline: we evaluate the user’s behavior against
the behavior of all peers.

But first, we have to define what we mean by user
behavior. This involves identifying the time-granularity for
analysis (hourly, daily, weekly etc.) and identifying a set of
features to characterize the pattern of access within each
time-period for each user. In this example, we chose to
monitor daily user access behavior and below are a subset
of features that are computed daily for each user-server pair:

« timestamp of first access of the day,

o timestamp of last access for the day,

o duration between last and first access,

o sum total of durations of all eflows of the day,
o number of eflows during the day,

« total upload bytes, and

« total download bytes.

Data collected over time across all the above features
serves as input to the anomaly detection algorithm. For
historical baseline, data vectors for several days in history
for a particular user-server pair is used as baseline data X.
Data for the same user-server pair for the test day serves
as test data vector x. For peer baseline, data vectors for all
users (or users within a particular group) accessing a server
on a particular day is used as baseline X for that day and
each vector within X is scored against that baseline.

III. ALGORITHM OVERVIEW

Our approach is based on the concept of Mahalanobis
distance [7]. We first describe the concept and detail how we
adapt it to create a flexible anomaly detection algorithm that
can be used in real-world scenarios to produce explainable
results.

A. Mahalanobis Distance

Given a set of observations of a variable, what charac-
terizes an anomaly? Intuitively, it is reasonable to think of
an anomaly as an unlikely observation - a low probability
event. One can look at the empirical distribution of the
variable and infer the probability for any observation. If
we assume that the variable has a normal distribution as
a first approximation, low probability events occur at the
tails of the distribution, far away from the mean value. In
other words, the farther out an observation is from the mean
value at the center of the distribution, the lesser the proba-
bility. Intuitively, finding such low probability observations
is equivalent to finding outliers that are farther away in
distance from values that are common. The distance from
the mean can then be used an indicator of the extent or
magnitude of anomaly. This distance, when expressed in
terms of the standard deviation instead of absolute units,
gives the z-score which shows how many standard deviations
away an observation is from the mean value. This allows
one to compare anomalies in variables that have different
distributions.

Mahalanobis distance is a multi-dimensional general-
ization of the z-score. When there are multiple variables
in each observation, the Mahalanobis distance shows how
many standard deviations away an observation is from the
mean value of all observations. It is unit-less and scale-
invariant. Given an observation vector of N variables x =
{z1,...,zy} and a set of observations X = {x1,...,xx}
with mean vector g = {1, ..., pun} and covariance matrix
3., the Mahalanobis distance is given by

\/(X—H)TE—l(X—/,L). (1)

Mahalanobis Distance in Practice: In real-world scenar-
ios, true values of the mean vector g and the covariance
matrix 3 are not available and one has to use empirical
estimates from the observations. To compute the distance,
notice from equation 1 that the sample covariance matrix X
cannot be ill-conditioned or singular, otherwise the inverse
covariance matrix X~! cannot be computed accurately.
See [5] for a detailed discussion on the numerical stability
of these calculations.

To get around these constraints, we take an alternative
approach that obviates the need for inverse covariance
matrix computation. Let the set of observations be given
by X = {x1,...,Xx} with mean vector p and a vector
o of standard deviations along each dimension. We first
normalize all variables to have 0 mean and unit variance
to generate

X ={%y,...,Xg} where X, = (x;, —pu) o (2

where © indicates element-wise division. For notational
convenience, let us represent this z-score transformation as

ii = ZSC(XZ'7 X)a (3)

where the first argument indicates the vector being trans-
formed and the second argument indicates the data whose
mean and variance information is used in the transformation.
We then transform the data using Singular Values Decom-
position (SVD [13]) as

UsvT =X “4)

where U and V are orthonormal matrices and S is a matrix
containing singular values as its diagonal elements. The
columns of U indicate orthogonal directions in decreasing
order of variance corresponding to decreasing magnitudes
of singular values in S. In other words, the columns of U
represent axes of a new coordinate system for the data. This
can help in two ways:

o If the matrix X is singular i.e. one or more of the
singular values are zero, then we take only those com-
ponents from U that correspond to non-zero singular
values and compute the projection. Let r denote the
number of components chosen and let s; be the i-th
singular value. Then,

r= Zl(sj > 0), where I(True) = 1, I(False) = 0.

all j

®)
o If the matrix is ill-conditioned i.e. one or more of the
singular values have extremely low magnitudes, one can
pick a threshold - say 95% or 99% - and choose only as
many components from U such that the sum of squares
of corresponding singular values (as a percentage of the
total sum) is greater than the threshold. If the threshold

is given by £, 0 < ¢ < 1 then

r = argmini, such that (Z s?/ Z s?) >t (6)

j=1 all j

We can now take the first » columns of U - let us
denote it by U - as the coordinate system we want to work
in. Given an observation vector x, we first preprocess it
the same way the training data X was preprocessed - by
subtracting the sample mean and dividing by the sample
standard deviation. We take the preprocessed vector x and
work with its projection y given by y = UTx. The
Mahalanobis distance of x from observations in matrix X
can then be calculated as

y'S %y 7

where S is a diagonal matrix of the first r singular values
from S.

To summarize, all the steps in the algorithm are shown
in table I.

Table I

ALGORITHM
Step 1. Inputs:
Baseline matrix X, test vector X
Step 2. z-score X and preprocess X:
X + zsc(X, X), % + zsc(x, X)
Step 3. SVD:
X - UsvT
Step 4. Number of components:
compute 7 from Eqn. 5 or 6
Step 5. Reduce to first 7 components:
U—-U,S—S§
Step 6. Project to SVD space:
UTx — y
Step 7. Compute distance:
yTS—2y.

B. Enhanced Mahalanobis Distance

We extend the approach described above in several ways
to make it more flexible and appropriate for our use-cases.

1) One Sided Deviations: A main requirement for most
security use-cases is to find cases where the deviations are
one-sided. For example, in the case of monitoring download
activity from a sensitive internal server, one might not really
care if somebody downloads less than what is normal but
would want to know if the download magnitude is really
large. But Mahalanobis distance will flag deviations from
normal activity equally on both the low and high sides.

We extend the approach to provide an optional parameter
for each of the N variables to specify if deviations have
to be ignored in the positive or negative direction from the
mean. To be more precise, the user specifies an optional
vector of length /N containing entries -1, 0 or 1. If the ¢-th
entry is -1, values of the i-th variable that are less than the
mean will not contribute towards the Mahalanobis distance
computation; if the value is +1, values greater than the mean
will not be considered. If the value is 0, values both above
and below the mean will be considered.

Let v denote this vector of parameters with v; being
the ¢-th entry. Referring back to Table I, we introduce an
additional step before projecting the preprocessed test data
vector onto the SVD space in Step 6. Let Z; refer to the i-th
entry of the preprocessed vector X. We modify X as follows:

z; =0 if z;0; >0 vV i, 1<i<N. ()

In this equation, we check if a variable has deviation in a
direction that is not of interest. We then change that entry
to the mean value, which for a z-scored variable is equal to
0. We then follow steps 6 and 7 to compute the distance.

2) Variable Weighting: Another common requirement in
some use-cases is the ability to provide different weights
to different variables. For example, if we want to monitor
users for extended hours of server access but do not care

100 T T T T T T T 100

801 801

60f 60[-
401 40l

201

0

40f

. n n n n n
[100 200 300 400 500 600 700 800 [

Figure 1.

L n n n n n
0 100 200 300 400 500 600 700 800

Illustration of mapping Mahalanobis distance to a confidence score between 0 and 100. In each panel, the blue curve indicates the sigmoid fit

on data points denoted by red stars. The Mahalanobis distance values are on the x-axis and confidence scores are on the y-axis. Writing the data points
as a set of (z, y) tuples, the data points are [(200, 1), (700, 90)] in the left panel, [(100, 1), (400, 40), (700, 90)] in the middle panel, and [(100, 1), (250,
20), (400, 40), (650, 50), (680, 75), (700, 90)]. The data-points can be weighted differently as well. In the third panel, the point (250, 20) has a weight of
0.4 and (650, 50) has a weight of 0.2 as compared to all the other data points with weights of 1.0.

much about their download activity, this extension provides
the ability to have time variables contribute more to the
Mahalanobis distance when compared to the byte-related
variables such as download and upload activity.

Let w be the vector of weights where w; is the weight for
the i-th variable. The idea is to increase the variance of the
i-th variable by a factor w;. To implement this, refer back
to Step 2 in Table I. After x is processed to obtain X, we
scale the entries as follows

X=XOW 9)

where ©® is element-wise multiplication.

3) Robustness to Outliers: Computing the Mahalanobis
distance using equation 1 has an important practical short-
coming. Since the true mean p and 3 are typically unknown,
in practice one uses empirical estimates from the dataset.
However, the estimate of the covariance matrix is very
sensitive to the presence of outliers in the data. There are
heuristic approaches that aim to find a subset of points in
the dataset that are ’pure” and exclude the outliers. It works
iteratively to find points whose covariance matrix has the
smallest determinant [10], [11].

Because of this and other reasons mentioned previously,
we take an alternative approach using SVD to compute the
distance. However, SVD is also sensitive to outliers and
the decomposition obtained from equation 4 can be skewed
because of the presence of outliers in X.

We take inspiration from recent work on robust versions
of Principal Component Analysis (PCA, [1]). PCA, closely
related to SVD, is a commonly used technique for dimen-
sionality reduction and data analysis. Given a matrix of noisy
measurements (images, sensor data etc.), PCA is used to find
a low-rank matrix that is used as a proxy for the true values
of the quantities being measured. This works well under
the assumption that the noise is small and the noise errors
follow an independent and identically distributed normal
distribution. This is not the case in many practical situations
and Robust PCA or RPCA [1] was introduced to handle

cases where assumption on the noise matrix is not satisfied.
The intuition of RPCA is simple. Given a measurement
matrix X, RPCA aims to identify additive components

X~A+E (10)

where A is a low-rank matrix and E is a sparse matrix. A
is interpreted as the true values and E is the error matrix.
Several algorithms have been proposed and the idea is to
cast the problem of separating the low-rank data component
from the sparse noise component into a convex optimization
problem. We use the inexact augmented lagrange multiplier
algorithm [6], an iterative method that typically converges
in less than 100 iterations.

Coming back to the problem of outliers skewing SVD, the
goal - similar to goal of the minimum covraince determinant
estimator - is to identify a subset of points in the dataset that
does not contain any outliers. Referring back to Table I,
we introduce an additional step before performing SVD in
Step 3. Let p be the number of points we would like in the
subset, this should be greater than half the number of total
points in the entire dataset. We first perform RPCA on the
preprocessed data matrix,

X ~ X +E. (11)

Compute the vector err to be the sum of absolute values
of entries in E, i.e. err; = |le;]|1, 1 < i < K corresponding
to the error of the i-th observation vector. We would like
to keep only the first p vectors with the lowest errors. Let
err be the p-th smallest value in err. We retain X; in X
if err; < err, otherwise we remove the vector from X.
After obtaining the reduced dataset in X, we perform Step
2 again before proceeding with the SVD.

4) Explainable Results: An important aspect of any
anomaly detection scheme is to not only identify the
anomaly but also provide information on why the detected
points are anomalous. In our case, we show how much each
variable contributes to the anomaly score.

Given the preprocessed test vector X = {Z1,...,Zn}, the
contribution of variable j is given by

N
¢ =a3/Y T} (12)
=1

5) Mapping the Distance to a Score: Mahalanobis dis-
tance is not bounded from above, the computed distances
can be arbitrarily large. However, one of the product require-
ments is to generate a confidence score for each anomaly that
is bounded in the interval [0, 100]. We map the mahalanobis
distance into a confidence score by using a sigmoid function.
If m is the distance, the final score is given by

100

4 e Fomma) (13)

score =

where k is the steepness of the curve and my is the distance
for which the score is 50.

Fixing values for the parameters k& and mg will specify
the exact mapping from the Mahalanobis distance to a
confidence score. We compute the parameters empirically
by using a linear fit given desired score for at least two
different values of m. We fit the equation below:

100 — score

s = —kxm-—+kxmg,where s=1log . (14)

core

It can be easily verified that the value for k is given by the
negative slope of the fit and the value for m, is given by
intercept/k. Figure III-B shows example results of this
process.

6) Learning from User Feedback: We have also imple-
mented an optional feature where the algorithm can take
feedback from users. For a given test vector, a user can
provide feedback that the computed anomaly score is too
high (in case of a false positive) or too low.

Handling false positives can be easily implemented with-
out making changes to the algorithm. In the algorithm as
mentioned in section III-B3, we make sure the training set
does not contain any outliers or anomalies. When a user
marks a test vector that is scored as an anomaly by the
algorithm, it means that the test vector can be considered
part of the baseline. In other words, we can use this test
vector marked as a false positive as part of the training
data. The idea is to maintain a list of false positive data
and include them during training to make sure similar data
vectors don’t raise anomalies in the future. However, this
approach cannot extend to the case where a user thinks the
generated anomaly score is too low.

To adapt to both kinds of feedback (anomaly score too
high or too low), we look at the contribution from each
variable to the score, and increase or decrease the weights
of each variable in proportion to the corresponding contri-
butions. For example, if a user marks a test vector as a
false positive with a score that is too high, the intuition is

Logs Flows Packets Files Alerts ThreatFeeds [EDEICRSIII(8=1]

i = Distillation X
9 = Correlation Data Fusion
r

e

n

. = Discrete Analvti

i . ytics

: = Behavioral

Cc

S

= Threat scores :
! Entity360
= Timelines
Malicious Threat Incident
[dentifcton Hunting Investigation NI

Compromised
User Insider
Discovery

Figure 2. Overview of the Niara Security Analytics Platform

to look at the variables that contribute the most and reduce
their weights. Similar vectors in future sessions will have
lower scores because of the lowered weights on the high-
contribution variables.

Let 6 be a tunable parameter between 0 and 1 that
indicates to what extent we want the weights changed based
on a single feedback. Let f indicate user’s feedback - it
takes value +1 if the user thinks the score is too low and
-1 if the user thinks the score is too high. We modify the
weight vector w as follows,

Wyew = W+ foc. (15)

To make sure the weights don’t grow too high or too low, it
is a good idea to have limits on the maximum and minimum
values.

IV. SOLUTION OVERVIEW AND IMPLEMENTATION

In this section, we provide an overview of the Niara plat-
form and describe details of the UEBA module architecture
and implementation.

A. Niara Security Analytics Platform

The Niara Platform is an enterprise security analytics
solution aimed at threat hunting, incident investigation,
insider threat detection and related use-cases. The goal is
to provide security analysts automated detection of attacks
that have bypassed perimeter defenses and are on the
inside. Activities such as command and control, internal
reconnaissance, lateral spread, privilege escalation and
exfiltration indicative of potentially malicious activity are
detected automatically. Figure 2 provides an overview of
the conceptual architecture of the platform.

Entity360: The core idea underlying the platform is
the concept of an Entity360. All information related to
a particular entity - a user, an IP address, or a device
- from a variety of data sources are brought together to
generate a comprehensive risk profile in the entity360.
It provides a coherent visual representation of all the
enriched security information that is associated with
an entity. It is meant to provide one-click access to
information that security analysts would otherwise spend
hours or days searching across multiple data silos and
assembling as part of any investigation and response effort.
Synthesizing entity360’s is a multi-step process - the first
step is bringing information from a variety of data sources
together in a data fusion step, and a variety of analytics
modules are then applied to extract specific security insights.

Data Fusion: The platform can ingest raw data from a
variety of network and security data sources (eg., packets,
flows, logs, files, alerts, threat feeds). During data fusion,
raw data is correlated to make it more meaningful (eg.,
associating IP addresses with users) and distilled into
summaries that provide rich context (eg., authentication
and device usage histories, port-protocol relationships).
The platform is built on a robust big data architecture that
can handle varying velocities in the arrival of data from
different sources at scale.

Analytics: Analytics modules use machine learning
models - both supervised and unsupervised - to detect
and identify events of importance to the security analyst.
These modules contribute to an entity’s overall risk score
which is tracked over time. There are several analytics
modules in the platform but they can be broadly grouped
into two categories - behavioral analytics and what we have
termed as discrete analytics. Discrete analytics modules are
mostly based on supervised machine learning algorithms
and are geared towards detecting and identifying the
known unknowns. Examples include identifying malware
infections, suspicious executable files etc. On the other
hand, behavioral analytics modules are mostly based on
unsupervised machine learning algorithms to address the
more complex problem of detecting the unknown unknowns
such as malicious or compromised insiders.

Events and Alerts: When an analytics module success-
fully detects malicious activity or an anomaly, it triggers an
event. Each event is associated with one or more entities and
comes with two scores - (i) a severity score that is defined
by the security analyst to indicate the business context and
importance, and (ii) a confidence score generated by the
module that can be thought of as a probability that the
module is correct in its detection. Values for both scores
are in the range from O to 100. For example, an analyst may
choose to have a severity of 100 for all behavioral events of

1
1
Data ! Data Source Entity& Filter Behavior Filter
Preparation : (eflow, ad_log.Allp_log (user, host, src_ip) (server list, usb_activity
1
1
1
1
Feature 1 Feature Fields Feature Types
Extraction : (timestamp, filesize, outbound_byteg (counts, cardinality, time, location)
1
1
1
1
Behavior 1 Baseline Profiling Window Profiling Models
Profiling : (peer, history) (1-day, 14-day) (z-score, good-turing, SVD)
1
1
1
1 n
Anomaly 1 Timeliness Efve(nt (Scc:]rmg Event Generation
Detection ! (real-time, offline) (feature type base (severity, detection_typd
1 scoring)
1
1

Figure 3. Generic Architecture for UEBA

the CEO of the company while choosing to set it to a low
score of 40 for events related to a non-critical server that
does not connect to any other machines. Similarly, when
a module is sure about a malware detection, the generated
confidence score will be closer to 100 and when it is not
certain, it may still trigger an event but will a low score.
Events with both severity and confidence scores greater than
60 are elevated as alerts. All events and alerts for an entity
are brought together in its entity360 and the severity and
confidence scores are combined to generate a unified alert
threat score.

B. UEBA Implementation

Figure 3 summarizes the architecture of the UEBA mod-
ule. The architecture supports other types of UEBA use-
cases but we will focus on server-access behavior anomaly
detection based on SVD. An analyst will first have to
configure the use-case by specifying (a) the type of entities
to focus on - users, IP addresses or devices, (b) the IP
address(es) or hostname(s) of the internal server of interest,
(c) the baselines to be used, and optionally (d) any other
filters on data. An example use-case could be to monitor
accesses to the internal finance server (server of interest)
by users (entity) within the finance group (additional data
filter). In addition, the analyst will define the features to be
used, we presented example features in Section II. We omit
details of the use-case configuration workflow as it is out of
scope for this paper.

The entire workflow can be broken down into four distinct
phases. We will describe each one of them below.

1) Data Preparation - In the first step, the workflow ob-
tains relevant data from all the data sources. It applies
all the defined filters, groups data by identified entities
and prepares data for the next feature extraction stage.

2) Feature Extraction - In this step, data is obtsained
from all the relevant fields, grouped by each entity
per day, and the configured features are computed and
stored.

Distribution of Confidence Scores

01-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Figure 4. Distribution of Confidence Scores. The x-axis denotes bins of
confidence scores and y-axis shows the number of events with confidence
scores in the corresponding bins.

3) Behavior Profiling - This is the step where for
each entity, the extracted features are grouped into
configured baselines and the machine learning model
(SVD) is applied to generate a behavior profile for that
particular entity.

4) Anomaly Detection - In the final step, the test feature
values are scored against the behavior profile and an
event is generated with an associated confidence score.

The entire workflow runs once every day on Apache Spark.

V. EXPERIMENTS AND RESULTS

The UEBA module has been deployed at multiple cus-
tomer sites as part of the Niara platform. In this section,
we present results on a real-world dataset of network traffic
collected within the Niara internal network over a span
of a 3 months from Nov 2015 through Jan 2016. The
entire dataset comprises 1,315,895,522 (1.3 Billion) raw data
records where each record corresponds to a network layer-4
conversation.

We present results on a specific server access behavior
use-case. We tracked accesses to our internal Jenkins server
by specifying the server’s IP and port (8080). During the
3-month period, there were 362,791 conversations in total
originating from various internal IP addresses to the Jenkins
server. We configured the UEBA module to detect anomalies
for this use-case using both peer and historical baselines.
There were 64 events that were generated out of which 39
were alerts with a confidence score greater than 60. Table II
shows the number of events and alerts by baseline type, and
Figure 4 shows the distribution of confidence scores.

Table 11
NUMBER OF EVENTS AND ALERTS BY BASELINE TYPE

Events | Alerts
History 12 03
Peer 52 36

Figure V shows an event and an alert generated for
the same admin user accessing the Jenkins server on Jan
14th. This example demonstrates the value of scoring an
entitity’s behavior against both historical and peer baselines.
While based on the activity of peers, the admin’s actions

Access Time Download Upload Duration
Access Time Download Upload Duration
Figure 5. The two panels above show visualizations of features for an

alert (top, confidence score 96) and an event (bottom, confidence score
16) generated for the same user on Jan 14th. In both panels, the first row
shows features of the user that was alerted on that day while the remaining
rows show features of the baselines. In the top panel, peers were used as
a baseline while the user’s own historical features were used in the bottom
panel. Notice that compared to peers, the behavior was anomalous while
compared to the user’s own past behavior, Jan 14th was a normal day.
The user was an admin of the Jenkins server and the deviation in behavior
compared to peers was expected. The “download bytes” feature is the most
contributing feature for this anomaly.

Access Time Download Upload Duration

Access Time Download Upload Duration

Figure 6. The two panels above show alerts for an admin (top, confidence
score 98, peer baseline) and a user (bottom, confidence score 76, historical
baseline), where the most contributing feature was the first or last time of
access during the day.

look anomalous but based on the historical behavior, it was
beningn behavior. The anomaly scores generated are based
on values of all features but the primary feature contributor
is “download bytes.” Figure V shows two alerts where the
primary feature contributors were related to the time of
access.

Discussion

There are several issues that one needs to pay particular
attention to during deployment. Below, we describe a few
of them in no particular order.

Size of training set: For results to be meaningful, the
absolute minimum number of records necessary for training
should be atleast the number of features used. But we are
also limited by practical deployment constraints where we
cannot wait for weeks to gather training datasets. With seven
features in our current implementation, we do not generate
any anomaly score until we have atleast 7 training records.
For historical anomalies, we start with the previous 7 days
and use upto the previous 14 days of data for training. For
the current implementation of peer anomalies, there is no
upper bound on the number of records in the training set.

Impact of variance in training data: 1If values for a
particular feature are too consistent in the training data, the
variance will be very small and small deviations can result
in extremely high anomaly scores. The anomaly score value
should always be looked at in the context of the training
data. For example, if an employee begins the day at the
same exact time every day and comes in a minute late on the
scoring day, it will raise an anomaly with a very high score.
A corollary is that the units used to express features can be
very important. During tuning and experimentation, we had
initially expressed first and last access times in minutes. In
certain cases, this artificially resulted in low variance in the
training dataset since we had lost the fidelity at the level of
seconds and generated a few false positive events. We then
started using seconds to express these two features.

Feature Weighting: Extreme care should be taken while
assiging different weights to different features. Unless the
use-case demands it, all features should be given equal
weights. In our examples, we provided higher weights to the
“time-of-access” features compared to the “bytes” features.
The values for first and last access times of the day are
always between 0 and 24 hours as opposed to download
or upload bytes which exhibit much higher variances. As
a result, high variances in the byte related features could
overwhelm deviations in access times that were of interest to
our internal security analysts. We cannot disclose the weight
values as the information is proprietary.

VI. CONCLUSIONS

In this paper, we presented the User and Entity Behavior
Analytics (UEBA) module of the Niara Security Analytics
Platform. We provided an overview of the solution and
presented details of the SVD-based algorithms to detect
anomalies of interest to security analysts. We described
the architecture and implementation details and showed the
effectiveness of the solution with example empirical results
on real-world data. The solution is currently deployed at
multiple customer sites and has provided increased visibililty
and insight to security teams about their networks and

users. In terms of follow-on work, we have generalized
the deployment architecture to enable customers to self
configure new use-cases on arbitraray logs of their choice.
We have also enhanced the module with more machine
learning models and validated them on real-world datasets.
We will report these developments in future papers.

VII. ACKNOWLEDGMENTS

We would like to thank Prof. Ankur Teredesai from
the University of Washington for reviewing the draft and
providing valuable feedback.

REFERENCES

[1] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Jrnl. of the ACM, 58(3), 2011.

[2] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Computing Surveys, Sep 2009.

[3] D. Denning. An intrusion detection model. IEEE Trans. on
Software Engg., 13(2), 1987.

[4] C. Gates and C. Taylor. Challenging the anomaly detection
paradigm: A provocative discussion. In Proceedings of the
2006 Workshop on New Security Paradigms, NSPW ’06,
pages 21-29, New York, NY, USA, 2007. ACM.

[5] A. Ker. Stability of the mahalanobis distance: A technical
note. Technical Report CS-RR-10-20, Oxford University
Computing Laboratory, 2010.

[6] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange
multiplier method for exact recovery of corrupted low-rank
matrices. Technical Report UILU-ENG-09-2214, UIUC,
2010.

[7]1 P. Mahalanobis. On the Generalised Distance in Statistics.
In Proceedings of the National Institute of Science, India,
volume 2, pages 49-55, 1936.

[8] A. Pinto. Secure because math: A deep-dive on machine
learning based monitoring. In Black Hat Briefings USA, 2014.

[9] K. Rieck. Computer security and machine learning: Worst
enemies or best friends? In SysSec Workshop (SysSec), 2011
First, pages 107-110. IEEE, 2011.

[10] P. Rousseeuw. Least median of squares regression. Jrnl. of
Am. Stat. Asscn., 1984.

[11] P. Rousseeuw and K. Van Driessen. A fast algorithm for the
minimum covariance determinant estimator. In Technomet-
rics, volume 41, Aug 1999.

[12] R. Sommer and V. Paxson. Outside the closed world: On
using machine learning for network intrusion detection. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages
305-316. IEEE, 2010.

[13] G. Stewart. On the early history of the singular value
decomposition. SIAM Review, 35-4:551-566, Dec 1993.

