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ABSTRACT

In this paper, we introduce the concept ofSimplex Decomposi-
tions and present a new Semi-Nonnegative decomposition tech-
nique that works with real-valued datasets. The motivationstems
from the limitations of topic models such as Probabilistic Latent
Semantic Analysis (PLSA), that have found wide use in the anal-
ysis of non-negative data apart from text corpora such as images,
audio spectra, gene array data among others. The goal of thispa-
per is to remove the non-negativity requirement for datasets so that
these models can work on datasets with both positive and negative
entries. We start by showing that PLSA is equivalent to finding
a set of components that define the corners of a simplex within
which all datapoints lie. We formalize this intuition by introduc-
ing the notion ofSimplex Decompositions- PLSA and extensions
are specific examples - and generalize the idea to be applicable to
arbitrary real datasets with both positive and negative entries. We
present algorithms and illustrate the method with examples.

1. INTRODUCTION

The problem of analyzing non-negative data appears in many di-
verse fields such as computer vision, semantic analysis, analysis
of audio spectra and gene expression analysis. The goal in such
applications is to find suitable representations that make hidden
structure in the data explicit. Methods such as Singular Value De-
composition (SVD), Principal Components Analysis (PCA), Inde-
pendent Components Analysis (ICA) and Projection Pursuit,are
not suitable for such data and techniques that exclusively deal with
non-negative data have gained in popularity. These techniques
can broadly be classified into linear-algebra inspired Non-negative
Matrix Factorization (NMF) and its derivatives; and probabilis-
tic topic models such as Probabilistic Latent Semantic Analysis
(PLSA; [1]) and its extensions such as Latent Dirichlet Alloca-
tion [2] and Correlated Topic Models [3] among others.

These latter methods that work only on non-negative data im-
plicitly impose non-negativity constraints on all the components
that are extracted. More specifically, they explain the given non-
negative data as a guaranteednon-negative linear combinationof a
set of non-negative “bases” that represent realistic “building blocks”
for the data. The fact that co-efficients in the linear combination
are non-negative implies that all “bases” can combine only addi-
tively without any cross-cancellations to approximate theinput.
This has intuitive appeal as bases can then be considered as “parts”
that combine in different ways to give rise to the entire dataset.

Probabilistic topic models, in addition, impose another con-
straint whereby all extracted components have to bemultinomial
distributions. When viewed as matrix decompositions, it implies
that the non-negative entries of basis-vectors and corresponding
mixture-weight vectors should also sum to unity. Since the same
set of basis vectors combine with various mixture weights that sum

to 1, the model approximations to the data points can be considered
as lying in a simplex defined by the basis vectors.

In this paper, we formalize this idea asSimplex Decomposi-
tionswhere the “parts-based” decomposition of the dataset has the
property that basis vectors combine additively and correspond to
the corners of a simplex surrounding the modeled data. We ex-
tend it to work onarbitrary datasets with both positive and neg-
ative entries. This is accomplished by a principled series of steps
that transform the dataset with real entries into one with only non-
negative entries so that topic models can then be applied on the
transformed dataset. The results are then transformed backto
the original data space. Such a decomposition of the real-valued
dataset is only “semi-nonnegative,” with the basis vectorshav-
ing real-valued entries while the mixture-weight vectors are con-
strained to non-negative entries that sum to 1. We christen this new
family of techniques asReal Topic Models.

The paper is organized as follows. In Section 2, we describe
the PLSA algorithm and introduce the idea of Simplex Decom-
position. In Section 3, we propose a method to extend Simplex
decompositions to datasets that can have both positive and nega-
tive entries. Section 4 provides a discussion of the algorithm and
compares the method to related techniques. We conclude the paper
in Section 5 with a brief summary and avenues for future work.

2. PRELIMINARIES

We first provide a brief description of PLSA as background and
introduce the termSimplex Decomposition. Let the data be given
by theW×D matrixC, with the(wd)-th element given bycwd. In
this section, the model is explained in the context of word-counts
data for the purposes of exposition.

2.1. Probabilistic Latent Semantic Analysis

PLSA is a statistical model that characterizes a corpus of text doc-
uments by extracting a set oflatent factorsor topicsthat the corpus
is comprised of. Data is modeled by parametrizing it in termsof
the following multinomial distributions - the probabilityof word
w appearing in documentd, P (w|d); the probability of wordw
appearing in topict, P (w|t); and the probability of topict appear-
ing in documentd, P (t|d). Mathematically, the model can now be
written as

P (w, d) = P (d)P (w|d) = P (d)
X

t

P (w|t)P (t|d). (1)

Consider the columncd belonging to thed-th document from the
data setC. The normalized version of this vectorc̄d (obtained
by scaling the entries to sum to 1.0), which we shall refer to as a
data distribution, is a multinomial distribution underlying the doc-
ument. The model approximates this data distribution byP (w|d),
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Fig. 1. Illustration of PLSA. The left panel shows an artificial data set of 400 3-dimensional data distributions. The data distributions,
shown as blue points lie on theStandard 2-Simplexgiven by{(001), (010), (100)}, shown as a dotted-triangle. The right panel shows
the Standard 2-Simplex as a 2-dimensional plane along with aset of 3 topic distributions (basis vectors) extracted fromthe data set using
PLSA. The model approximates data distributions as points lying within the convex hull formed by the topic distributions. Also shown are
two data points (marked by + and×) and their respective approximations (respectively shownas♦ and�).

which in turn is expressed as a linear combination oftopic dis-
tributionsP (w|t). The topic distributions can be thought of as a
set of basis vectors that combine in different proportions (given by
P (t|d)) to form the data distributions.

Given the matrixC, parameters can estimated through itera-
tions of the following equations derived using the EM algorithm,

P (t|w, d) =
P (t|d)P (w|t)

P

t P (t|d)P (w|t) , and

P (w|t) =

P

d cwdP (t|w, d)
P

w

P

d cwdP (t|w, d)
, P (t|d) =

P

w cwdP (t|w,d)
P

w cwd

(2)
The EM algorithm guarantees that the above updates convergeto
a local optimum.

We briefly point out here that the PLSA model of equation (1)
can be written as a matrix factorization as follows:

C̄W×D ≈ WW×KHK×D = PW×D, (3)

whereC̄ is the matrix of data distributions (normalized data set),
W is the topic matrix of entriesP (w|t) with columnwt corre-
sponding to thet-th topic, H is the mixture-weights matrix of
entriesP (t|d) with columnhd corresponding to thed-th docu-
ment andP is the model approximation matrix of entriesP (w|d)
with columnpd corresponding to thed-th document. It has been
pointed out before [4, 5] that this decomposition is equivalent to
Non-negative Matrix Factorization.

2.2. PLSA as Simplex Decomposition

The PLSA model can be visualized geometrically as illustrated in
Figure 1. The normalized datapointsc̄d, the model approximations
pd, and the topic distributionswt, all beingW -dimensional multi-
nomial distributions, can be viewed as points in a(W−1) simplex.
The model expressespd as points within the convex hull formed
by topic distributionswt. The aim of the model is to determine
topicswt such that the modelpd for any normalized data point
c̄d approximates it closely. Since the modelpd is constrained to
lie within the simplex defined bywt, it can model̄cd accurately
only if the latter also lies within the same hull. Any data distri-
bution c̄i that lies outside the hull defined bywt is modeled with

error. Thus, the objective of the model is to find topics (or basis
vectors) such that they form the corners of a simplex enclosing the
normalized data points. We christen any model that decomposes a
dataset into a set of basis vectors that form a simplex aroundthe
datapoints as aSimplex Decomposition. As we have seen, PLSA
is one such example of a Simplex Decomposition.

One of the advantages of Simplex Decompositions is that it
allows for principled extensions. One can take PLSA as an ex-
ample where several extensions have been proposed by imposing
additional structure on the mixture weights. These extensions such
as LDA (with a Dirichlet prior on mixture weights), Sparse-PLSA
(entropic prior on mixture weights, [6]) and Correlated Topic Model
(with a log-normal prior on mixture weights) also are examples of
Simplex Decompositions since they too extract basis vectors that
form corners of a simplex.

All these Simplex Decompositions we have mentioned so far
operate only on non-negative data. The next section describes the
main contribution of this paper where we generalize this idea to be
applicable to real-valued datasets with± entries.

3. SIMPLEX DECOMPOSITION FOR ARBITRARY
DATASETS

Consider a new problem where we are given aW ×D data matrix
B. UnlikeC, the entries ofB are no longer constrained to be non-
negative. The problem is to find a Simplex Decomposition similar
to equation (3). That means we need a set of “basis vectors” that
combine additively without any cross-cancellations (i.e. with only
non-negative co-efficients) to approximate the given dataset and
form the corners of a simplex surrounding the datapoints (i.e. the
co-efficients sum to 1). In other words, we desire a decomposition
of the form

B ≈ WW×KHK×D = PW×D (4)

whereK is the desired dimensionality of the decomposition,W

is the matrix of basis vectors[ω1 . . . ωK ], H is the matrix of
mixture-weights[~1 . . . ~D], andP is the matrix of approxima-
tions [ρ1 . . . ρD]. Note that entries of the basis vectors (entries of
matrixW ) are not constrained to be non-negative1.

1We use PLSA as the example topic model to illustrate the method but
the proposed techniques are applicable to any topic model that expresses



The basic idea of the method is as follows. We transform the
data vectors inB such that the transformed data vectors are multi-
nomial distributions (all entries are non-negative and sumto 1).
PLSA can then be applied on this transformed dataset to obtain
basis vectors and mixture weight matrices. The basis vectors thus
obtained in the transformed space are transformed back intothe
original data space. If we make sure that the transformationis lin-
ear, the mixture weights obtained from the PLSA step will also
serve as the mixture weights for the decomposition in the original
data space. We call this new methodReal-PLSA (or more gener-
ally Real-model wheremodel denotes any other topic model).

3.1. Naive Approach

The simplest way to transform a dataset with± entries to one with
only positive entries is a simple translation. By adding a number
greater than the magnitude of the minimum entry in the dataset, all
entries of the dataset can be turned positive.

However, this straight-forward approach will be insufficient.
To understand, note that PLSA (and other topic models) does not
model the given non-negative dataset directly but models the un-
derlying distributions. In other words, PLSA models thenormal-
ized dataset. This implies that the geometry of the normalized
dataset differs based on the magnitude of the offset appliedduring
the translation.

Consider an example of three two dimensional points -A(−2.5,
−0.5), B(−1.5, 1.5) andC(−2, 0.5). The relative distances be-
tween the points are

|AB| : |BC| : |CA| :: 2 : 1 : 1. (5)

Now, consider adding a positive number 3.5 to all the entriesto
make the dataset positive. We obtain pointsA(1, 3), B(2, 5) and
C(1.5, 4). What PLSA tries to model, however, is the normal-
ized version of these points, given byA′(0.25, 0.75), B′(0.2857,
0.7143) andC′(0.2727, 0.7273). The relative distances for these
normalized points are given by

|A′B′| : |B′C′| : |C′A′| :: 2.75 : 1 : 1.75.

Adding 3.5 turned all entries positive but it skewed the relative
geometry of the normalized points. Adding a different constant
instead of 3.5 will skew the geometry differently. For example,
adding 4.5 to the points gives usA(2, 4), B(3, 6) andC(2.5, 5),
all of whom correspond to the point (1/3, 2/3) when normalized.

This example clearly demonstrates the skew introduced by the
above approach. We need a transformation that also preserves
the relative geometry between all the points. This can be accom-
plished by transforming the data to not only have positive entries
but to make sure they are also multinomial distributions, aswe
explain in the following subsection.

3.2. Real Topic Models

The transformation we propose is based on a very simple intu-
ition. Given a real-valued dataset of dimensionalityW with ± en-
tries, it is always possible to express it as a(W + 1)-dimensional
dataset where all the points lie on anW -dimensional hyperplane.
However, we need a method to identify the hyperplane we desire.
We know that for PLSA to be applicable on the new transformed

document distributions as mixtures of topics similar to PLSA.

dataset, we need the points to lie on a hyperplane such that all en-
tries are positive and sum to 12. The latter constraint that all entries
sum to 1 actuallydefinestheW -dimensional hyperplane we need.
For example, if we are given a 2-dimensional data set, we needthe
hyperplanex1 + x2 + x3 = 1 in 3D space where variablesx1, x2

andx3 indicate the co-ordinates of the 3D space. A simple trans-
formation onto this hyperplane is not enough - the first constraint
implies that we need the points to lie in the portion of the plane that
is in the positive orthant of the(W + 1)-dimensional space. This
region of the hyperplane, marked by points unit-distance away
from the origin on the positive side of each of the(W + 1) axes,
forms the standardW -simplex. In the 3D case, this simplex is
given by the triangle formed by points(001), (010) and(100).

To accomplish the first step, we need a set of orthonormal vec-
tors that define the desiredW -dimensional hyperplane in(W +1)-
dimensions. There are infinitely many different sets of orthonor-
mal basis vectors that can be used and as many different ways to
find one such set. The first contribution of this paper is a method
to obtain one such orthonormal basis. We use a simple recursive
method and the details are explained in Appendix A.

LetT denote the(W +1)×W orthonormal matrix where the
columns represent individual basis vectors that define the desired
hyperplane. For example, in the case of 2-dimensional data,the
two unit-vectors defining the plane are given byk1×[−1, 1, 0] and
k2×[1, 1,−2] wherek1 = 1/

√
2 andk2 = 1/

√
6 are appropriate

normalizing factors.
The co-ordinates of the original dataset in the(W +1) dimen-

sional space can now be computed as the columns of matrix

B̂ = (BT
T

T )T = TB. (6)

The new transformed(W +1)-dimensional data points in̂B lie in
a space parallel to the desired hyperplane.

The second step is to make sure that all transformed data points
are within the standardW -simplex,i.e. all entries are positive. We
check the matrix̂B for negative entries and subtract the least neg-
ative entry from the entire matrix. This is equivalent to translating
all the datapoints in a direction orthogonal to the simplex until all
the co-ordinates are non-negative. Because of the translation, the
entries of each datapoint sum to constant, sayQ. We rescale the
data byQ to transform them to lie within the standardW -simplex.
Let the data after this stage of transformation be denoted bythe
(W + 1) × D matrixB̄.

Consider the example points from the previous sectionA(−2.5,
−0.5), B(−1.5, 1.5) and C(−2, 0.5), whose relative distances
were given by equation (5). Transforming these points as men-
tioned above, we obtain three-dimensional pointsA′(0, 0.5977,
0.4023), B′(0.2576, 0.6161, 0.1263) andC′(0.1288, 0.6069, 0.2643).
It is easy to verify that

|A′B′| : |B′C′| : |C′A′| :: 2 : 1 : 1,

thus the transformation preserves the local geometry of thepoints.
The dataset̄B is now amenable for PLSA as the entries of each

column are positive and sum to 1. Performing PLSA, we obtain

B̄ ≈ W̄ (W+1)×KHK×D = P̄ (W+1)×D,

2Technically, data vectors need not sum to 1 for PLSA to be applicable.
However, what PLSA models is in fact normalized data vectors. Having
this constraint explicitly simplifies the choice of our datatransformation.
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Fig. 2. Illustration of Real-PLSA. Blue dots show 1000 two-
dimensional datapoints generated by a Gaussian distribution. Cor-
ners of the red triangle correspond to the basis vectors extracted.
Also shown are five randomly chosen points from the dataset illus-
trated as red stars and their corresponding model approximations
shown by black squares (see text). 37 data-points lie outside the
red triangle and are thus modeled with error.

whereW̄ andP̄ are matrices of basis vectors and approximations
expressed in the(W + 1)-space, andH is the matrix of mixture
weights.

We now subjectW̄ to the same transformations that converted
B to B̄ but in the reverse order. We first undo from̄W the scaling
and translation that matrix̂B was applied with to obtain̄B. Let us
denote the basis vector matrix at this stage asŴ . The final step is
to transform these vectors into the originalW -dimensional space,
which is accomplished by3

W = (Ŵ
T
T)T . (7)

Since all the transformations involved were linear, it alsoimplies
that

B ≈ WW×KHK×D.

The algorithm is summarized in Appendix B in matlab code
which is also available athttp://cns.bu.edu/ ∼mvss/upub/ .

3.3. Illustrations on Synthetic Datasets

3.3.1. Example 1

Let us take an example of 1000 points in 2-dimensions generated
by a Gaussian distribution to understand the procedure. Shown
below are five points randomly chosen from this data that we will
use to illustrate every step of the process:

»

−0.6179 −0.6371 0.3201 0.2714 0.7628
0.7010 −0.5129 1.4165 −0.1687 0.1634

–

The first step is to transform the dataset by projecting onto the
vectors ofT as given by equation (6). We obtain the transformed
datapoints as

2

4

−0.1507 −0.6599 0.8046 0.1230 0.6061
0.7231 0.2411 0.3519 −0.2607 −0.4727

−0.5723 0.4187 −1.1565 0.1377 −0.1334

3

5

3SinceT is orthonormal,T in equation (7) inverses the transformation
done byTT in equation (6). IfT is not normalized and is just an orthog-
onal matrix, one has to usepinv(TT ) instead ofT in equation (7), where
pinv(.) denotes the pseudoinverse.

The minimum entry in the new transformed dataset turns out tobe
-3.1004. Subtracting that from all the entries and re-scaling them
by the sum of the columns, we obtain the points as

2

4

0.3171 0.2624 0.4198 0.3466 0.3985
0.4111 0.3593 0.3712 0.3053 0.2825
0.2718 0.3784 0.2090 0.3481 0.3190

3

5 .

Running PLSA on this transformed dataset, we obtain the ba-
sis vectors as

2

4

0.6993 0.2343 0.0456
0.2414 0.0199 0.7217
0.0594 0.7459 0.2327

3

5

which when transformed back to the original 2-dimensional space
can be written as

»

3.0115 1.4100 −4.4464
3.1210 −4.6995 1.1465

–

,

and the mixture weights corresponding to the five points are also
obtained as shown below.

2

4

0.3586 0.2272 0.5345 0.3605 0.4481
0.1968 0.3607 0.1337 0.3467 0.3194
0.4445 0.4121 0.3318 0.2928 0.2324

3

5 .

Figure 2 illustrates the results.

3.3.2. Example 2

We now take another example where we created a dataset by taking
a set of basis vectors and combining them using randomly gener-
ated mixture weights. The goal in this case is to test whetherthe
proposed algorithm can extract the original basis vectors when ap-
plied on the synthesized dataset.

The dataset was synthesized as follows. Three basis vectors
containing both positive and negative entries were first generated
and combined with 50 randomly generated mixture weights to syn-
thesize the dataset. The mixture weight entries corresponding to
each data point were all positive and totaled to 1. The matlabcom-
mands used to generate the data were as follows:

B = interp2( randn( 10, 3), (1:3)’,...
(1:.1:10), ’spline’);

H = rand( 3, 50).ˆ3;
H = H ./ repmat((sum(H)), 3, 1);

whereB corresponds to the matrix of basis vectors,H is the matrix
of mixture weights, and the synthesized dataset is given by the
matrix productBH.

The orginal basis vectors, mixture weights and a subset of the
data points are shown in Figure 3. Also shown are the bases ex-
tracted by applying theReal-PLSA algorithm on this dataset. We
point out that the algorithm successfully extracts the original bases
with which the data was synthesized. This example illustrates
the ability of the algorithm to uncover the original structure in a
dataset.

The application illustrated by this example is similar to In-
dependent Components Analysis (ICA). Figure 3 also shows the
bases obtained by ICA (using the FastICA4 algorithm) for com-
parison and notice that theReal-PLSA bases are better than the

4http://www.cis.hut.fi/projects/ica/fastica/
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Fig. 3. Illustration ofReal-PLSA on a synthesized dataset. 50 data points were synthesized by combining the three basis vectors shown in
panel (a) with 50 randomly generated triplets. All the triplets sum to 1 and are shown in panel (b). A subset of 10 randomly chosen data
points thus constructed are shown in panel (c).Real-PLSA was applied to extract three basis vectors from this synthesized dataset, and the
resulting bases extracted are shown in panel (d). For comparison, bases obtained from Independent Components Analysis(ICA) are shown
in panel (e). A simple root-mean-squared error comparison between the extracted and original components show thatReal-PLSA is better
(RMS errors 0.06, 0.21 & 0.42 for the three components respectively) compared to ICA (RMS errors 0.29, 0.34 & 0.7 respectively).

ICA bases. Unlike ICA algorithms,Real-PLSA decomposition is
a Simplex Decomposition where the mixture weights are all non-
negative and sum to 1. Since this constraint is built into thedecom-
position, the constraint was also incorporated while synthesizing
the dataset so that the algorithm’s ability to uncover the original
bases components could be tested. Nevertheless, relationships be-
tween the proposed algorithm and ICA is a ripe area for research
that we leave for future work.

4. DISCUSSION

In this section, we briefly discuss the complexity issues of the pro-
posed method and present some related work. We first point out
that Real Topic Models we have presented, even though inspired
by applications on± data, can also be applicable to non-negative
data in certain situations. As we have pointed out, PLSA5 and its
extensions model not the data directly but the data distributions.
In some situations where the “energies” of data points are also im-
portant, modeling data distributions is not desirable and one can
model datapoints directly by resorting to the proposed approach.

4.1. Complexity

The core of the proposed technique is the original topic model it-
self. The data is preprocessed first to make it ready for the topic
model and once the basis vectors are obtained from the topic model,
they are processed back to the original data space. The most inten-
sive step in the preprocessing of data involves a matrix multiplica-
tion. Given this fact and the fact that most topic models employ
iterative algorithms to estimate parameters, the topic model core
computations act as the complexity bottleneck. Thus, the com-
plexity of the proposed approach depends on the complexity of the
algorithms used for the topic model computations.

4.2. Related Work

The author is not aware of any work in the topic modeling commu-
nity to extend their methodologies for data with negative and pos-
itive entries. It is understandable as the main motivation there is to
analyze text corpora where one does not encounter such datasets.
However, there has been some work to extend the technique of

5There is another factorization model also sometimes referred to as
PLSA given byP (w, d) =

P

t P (t)P (w|t)P (d|t). This new model also
can be applied on± data using the proposed method to obtain± bases.
We skip details due to lack of space.

Nonnegative Matrix Factorization to generalized datasets. A tech-
nique called Semi-Nonnegative Matrix Factorization was intro-
duced by [7] where the goals were similar to ours. In particular,
the method generates a decomposition of the form

X± ≈ F±G
T
+

where the subscripts of the matrices indicate the signs of entries
allowed in the matrices. Even though the constraints imposed in
the decomposition are similar to what we propose, the similarities
end there. Since there are no additional constraints imposed on
the matrixGT , the method is not a Simplex Decomposition and
the extracted bases cannot be viewed as corners of a convex-hull
surrounding the dataset. In fact, it is argued in the paper, despite
unsatisfactory results, that the obtained basis vectors are analogues
of centroids obtained from a clustering algorithm on the data. In
addition to this advantage of interpretability, the main advantage
of the technique presented in this paper over this method is the
generality of the approach. The approach of Real Topic Models
allows one to model data using any extension of PLSA whereas
in Semi-Nonnegative Matrix Factoization, there is no principled
way to impose priors such as dirichlet or log-normal distributions.
And the modular nature of our approach ensures that any future
algorithmic advances in estimation can be incorporated right away.

There has been a lot of work in the computational geometry
field in tackling the problem of constructing convex-hulls for ar-
bitrary dimensional data. For a long time, solutions were known
only for even-dimensional data (and the 3-dimensional case) un-
til [8] finally proposed a general solution. Once a convex-hull is
found, theoretically every data-point can be represented as a mix-
ture of points on the corners of the hull though the algorithms do
not explicitly compute the mixture weights. In computational ge-
ometry, the focus is on finding afull convex hull and obtaining
exact solutions. In real topic models, the number of basis vec-
tors one desires is often far lesser than the dimensionalityof the
dataset. Thus, the basis vectors can be thought of representing a
convex-hull-like structure in lower dimensions. And topicmodels
do not produce exact results as iterative algorithms such asEM or
variational methods are often employed to arrive at the solutions.
In spite of these differences, it will be instructive to compare the
two approaches and we leave that for future work.

5. CONCLUSIONS

In this paper, we introduced a new method that enables one to
apply topic models such as PLSA, LDA and other extensions of
PLSA on data that has both negative and positive entries. More



specifically, we introduced the idea of aSimplex Decomposition-
of which PLSA and extensions are examples - and showed how it
can be generalized to data with± entries. A Simplex Decomposi-
tion decomposes a dataset into basis vectors that form the corners
of a simplex surrounding the dataset. We showed this geometry in
the case of PLSA. We then described how any arbitrary datasetcan
be linearly transformed into the next higher dimension where they
are represented as data distributions. This allows the application
of topic models on the transformed dataset. We presented an al-
gorithm to compute the transformation and illustrated the method
by example applications on synthetic datasets. We also discussed
the complexity issues of the proposed algorithm and reviewed re-
lated work. There are several potential applications of this work
for tasks such as feature extraction, clustering and classification
among others. The work brings the power of statistical topicmod-
els to datasets without the need to have non-negativity constraints.
Among other directions, a promising area of future work would
be to compare and contrast the performance of these topic models
with standard machine learning algorithms.

Acknowledgements: I thank Paris Smaragdis at Adobe and Bhik-
sha Raj at CMU for invaluable comments and feedback.

Appendices
A. CONSTRUCTION OF T

In this appendix, we propose a method to generate a set ofW
orthonormal(W + 1)-dimensional vectors that span the standard
W -simplex. We first find a set of orthogonal vectors which are
normalized later. Notice that since each vector of the matrix lies
parallel to the simplex, the sum of all entries in the vector should
sum to zero. The entries of every point within the simplex sums to
the same constant and a vector, being the difference of two points,
will have entries that sum to zero. Given this constraint, anor-
thogonal set of vectors can be found in an inductive fashion based
on the two basic observations. LetTW denote aW × (W − 1)

matrix of (W − 1) orthogonal vectors. Let~1W and~0W denote
W -vectors where all the entries are 1’s and 0’s respectively.Sim-
ilarly, let 1a×b and0a×b denotea × b matrices of all 1’s and 0’s
respectively. It can be easily shown that the matrixT(W+1) given
by

»

TW ~1W

~0T
(W−1) −W

–

if W is even, and

»

T(W+1)/2 0(W+1)/2×(W−1)/2
~1(W+1)/2

0(W+1)/2×(W−1)/2 T(W+1)/2 −~1(W+1)/2

–

,

if W is odd, is orthogonal.T(W+1) is then normalized to obtain
an orthonormal matrix.

Given these rules and the fact thatT1 is an empty matrix, one
can easily build an algorithm to find the matrixTW . Pseudocode
for the algorithm is shown below.

% m - dimensionality of data
% Find (m+1)-by-m orthonormal matrix tc.
idxs = [m+1]; i = m+1; tc = [];
while (i˜=1)

idxs = [idxs floor(i/2)];
i = floor(i/2);

end

for i=idxs(end-1:-1:1)
tcs2 = size(tc, 2);
tn = [tc * [eye(tcs2) zeros(tcs2, tcs2)];...

tc * [zeros(tcs2, tcs2) eye(tcs2)]];
tn = [tn [ones(floor(i/2), 1);...

-ones(floor(i/2), 1)]];
if rem(i, 2)

tn = [tn ones(i-1, 1)];
tn = [tn; [zeros(1, i-2) -(i-1)]];

end
tc = tn;

end
tc = tc./repmat(sqrt(sum(tc.ˆ2)), m+1, 1);

B. REAL TOPIC MODELS: ALGORITHM

This appendix provides matlab code for the entire algorithm.

% Inputs: m-by-n data matrix v, Number of
% desired components r.
% Outputs: m-by-r basis vector matrix w
% r-by-n mixture-weight matrix h
% Form the orthonormal transformation
% matrix tc (see Appendix A)

% transform the data into (n+1) dimensions
nv = (v’ * tc’)’;
mnv = min(nv(:)); nv = nv-mnv;
msc = sum(nv(:, 1)); nv = nv ./ msc;

% Run Topic Model
[w, h] = topic_model(nv, r, param);

% Transform w back to orig dimensions
w = w* msc; w = w+mnv;
w = (w’ * tc)’;
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