SIMPLEX DECOMPOSITIONSFOR REAL-VALUED DATASETS

Madhusudana Shashanka

Mars, Inc., 100 International Drive, Mount Olive NJ 07828

ABSTRACT

In this paper, we introduce the concept Simplex Decomposi-
tions and present a new Semi-Nonnegative decomposition tech-
nique that works with real-valued datasets. The motivasi@ms
from the limitations of topic models such as Probabilistatént
Semantic Analysis (PLSA), that have found wide use in thé-ana
ysis of non-negative data apart from text corpora such ages)a
audio spectra, gene array data among others. The goal gahis
per is to remove the non-negativity requirement for datasethat
these models can work on datasets with both positive andinega
entries. We start by showing that PLSA is equivalent to figdin
a set of components that define the corners of a simplex within
which all datapoints lie. We formalize this intuition by iatluc-

ing the notion ofSimplex DecompositionsPLSA and extensions
are specific examples - and generalize the idea to be apiglittab
arbitrary real datasets with both positive and negativeesntWe
present algorithms and illustrate the method with examples

1. INTRODUCTION

The problem of analyzing non-negative data appears in many d
verse fields such as computer vision, semantic analysitysima
of audio spectra and gene expression analysis. The goatin su
applications is to find suitable representations that matdeim
structure in the data explicit. Methods such as Singulan&/&e-
composition (SVD), Principal Components Analysis (PCAyld-
pendent Components Analysis (ICA) and Projection Pursud,
not suitable for such data and techniques that exclusivedywith
non-negative data have gained in popularity. These teaksiq
can broadly be classified into linear-algebra inspired Negative
Matrix Factorization (NMF) and its derivatives; and prolbab

tic topic models such as Probabilistic Latent Semantic ysial
(PLSA; [1]) and its extensions such as Latent Dirichlet AHlo
tion [2] and Correlated Topic Models [3] among others.

These latter methods that work only on non-negative data im-
plicitly impose non-negativity constraints on all the campnts
that are extracted. More specifically, they explain the yimen-
negative data as a guaranteesh-negative linear combinatiaf a
set of non-negative “bases” that represent realistic tiig blocks”
for the data. The fact that co-efficients in the linear corabon
are non-negative implies that all “bases” can combine odlji-a
tively without any cross-cancellations to approximate ithgut.
This has intuitive appeal as bases can then be considerpdrds™
that combine in different ways to give rise to the entire geta

Probabilistic topic models, in addition, impose anothen-co
straint whereby all extracted components have taridtinomial
distributions When viewed as matrix decompositions, it implies
that the non-negative entries of basis-vectors and carnebpg
mixture-weight vectors should also sum to unity. Since tae
set of basis vectors combine with various mixture weighas $sim

to 1, the model approximations to the data points can be derei
as lying in a simplex defined by the basis vectors.

In this paper, we formalize this idea &mplex Decomposi-
tionswhere the “parts-based” decomposition of the dataset teas th
property that basis vectors combine additively and comedpo
the corners of a simplex surrounding the modeled data. We ex-
tend it to work onarbitrary datasets with both positive and neg-
ative entries This is accomplished by a principled series of steps
that transform the dataset with real entries into one witly non-
negative entries so that topic models can then be appliethe®n t
transformed dataset. The results are then transformed tioack
the original data space. Such a decomposition of the rdaéda
dataset is only “semi-nonnegative,” with the basis vectuas-
ing real-valued entries while the mixture-weight vectors eon-
strained to non-negative entries that sum to 1. We chrisismew
family of techniques aReal Topic Models

The paper is organized as follows. In Section 2, we describe
the PLSA algorithm and introduce the idea of Simplex Decom-
position. In Section 3, we propose a method to extend Simplex
decompositions to datasets that can have both positive egal n
tive entries. Section 4 provides a discussion of the algariand
compares the method to related techniques. We concludefies p
in Section 5 with a brief summary and avenues for future work.

2. PRELIMINARIES

We first provide a brief description of PLSA as background and
introduce the ternSimplex DecompositioriLet the data be given
by theW x D matrix C, with the(wd)-th element given by,,q4. In

this section, the model is explained in the context of wardnts
data for the purposes of exposition.

2.1. Probabilistic Latent Semantic Analysis

PLSA is a statistical model that characterizes a corpusxofic-
uments by extracting a set latent factorsor topicsthat the corpus
is comprised of. Data is modeled by parametrizing it in teahs
the following multinomial distributions - the probabiliyf word

w appearing in document, P(w|d); the probability of wordw
appearing in topi¢, P(w|t); and the probability of topi¢ appear-
ing in documentl, P(t|d). Mathematically, the model can now be
written as

P(w,d) = P(d)P(w|d) = P(d) Z P(wlt)P(t|d). (1)

Consider the colume, belonging to thel-th document from the
data setC. The normalized version of this vectay (obtained
by scaling the entries to sum to 1.0), which we shall referstaa
data distribution is a multinomial distribution underlying the doc-
ument. The model approximates this data distributiorPfw|d),
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Fig. 1. lllustration of PLSA. The left panel shows an artificial @atet of 400 3-dimensional data distributions. The dataikligtons,
shown as blue points lie on titandard 2-Simplegiven by {(001), (010), (100)}, shown as a dotted-triangle. The right panel shows
the Standard 2-Simplex as a 2-dimensional plane along ws#t af 3 topic distributions (basis vectors) extracted ftbmdata set using
PLSA. The model approximates data distributions as poyitg lwithin the convex hull formed by the topic distributmnAlso shown are
two data points (marked by + and) and their respective approximations (respectively shasf and).

which in turn is expressed as a linear combinatiortapiic dis-
tributions P(w|t). The topic distributions can be thought of as a
set of basis vectors that combine in different proporti@igeh by
P(t|d)) to form the data distributions.

Given the matrixC, parameters can estimated through itera-
tions of the following equations derived using the EM altuori,

P(t]d) P(wlt)
22 P(td) P(wlt)’

D gCwaP(tw,d) 2w CwaP(tw, d)
2w g cwaP(thw, d) X, Cud o

The EM algorithm guarantees that the above updates cont@rge
a local optimum.

We briefly point out here that the PLSA model of equation (1)
can be written as a matrix factorization as follows:

P(tlw,d) = and

P(wlt)

, P(t|d)

@)

whereC is the matrix of data distributions (normalized data set),
W is the topic matrix of entried’(w|t) with columnw;, corre-
sponding to the-th topic, H is the mixture-weights matrix of
entries P(t|d) with columnh, corresponding to thé-th docu-
ment andP is the model approximation matrix of entriéXw|d)
with columnp, corresponding to thé-th document. It has been
pointed out before [4, 5] that this decomposition is equ@aalto
Non-negative Matrix Factorization.

Cwxp =~ WwxrkHkxp =Pwxp,

2.2. PLSA as Simplex Decomposition

The PLSA model can be visualized geometrically as illusttan
Figure 1. The normalized datapoirtg the model approximations
P4, and the topic distributione, all beingl¥ -dimensional multi-
nomial distributions, can be viewed as points if¥d—1) simplex.
The model expressgs; as points within the convex hull formed
by topic distributionsw;. The aim of the model is to determine
topics w: such that the modgb, for any normalized data point
cq approximates it closely. Since the moggl is constrained to
lie within the simplex defined by, it can modelc; accurately
only if the latter also lies within the same hull. Any datatdis
bution¢, that lies outside the hull defined by, is modeled with

error. Thus, the objective of the model is to find topics (csiba
vectors) such that they form the corners of a simplex enuipie
normalized data points. We christen any model that decoespas
dataset into a set of basis vectors that form a simplex arthed
datapoints as 8implex DecompositionAs we have seen, PLSA
is one such example of a Simplex Decomposition.

One of the advantages of Simplex Decompositions is that it
allows for principled extensions. One can take PLSA as an ex-
ample where several extensions have been proposed by mgposi
additional structure on the mixture weights. These exterssuch
as LDA (with a Dirichlet prior on mixture weights), Sparse$A
(entropic prior on mixture weights, [6]) and Correlated itd@odel
(with a log-normal prior on mixture weights) also are exagspbf
Simplex Decompositions since they too extract basis vedtat
form corners of a simplex.

All these Simplex Decompositions we have mentioned so far
operate only on non-negative data. The next section desctite
main contribution of this paper where we generalize this ibebe
applicable to real-valued datasets witrentries.

3. SSMPLEX DECOMPOSITION FOR ARBITRARY
DATASETS

Consider a new problem where we are givaivax D data matrix
B. Unlike C, the entries oB are no longer constrained to be non-
negative. The problem is to find a Simplex Decomposition Igimi
to equation (3). That means we need a set of “basis vectoas” th
combine additively without any cross-cancellations. fwith only
non-negative co-efficients) to approximate the given ddtasd
form the corners of a simplex surrounding the datapoiings the
co-efficients sum to 1). In other words, we desire a decortipasi
of the form

BaWwxxkMHrxp = PwxbD 4)

where K is the desired dimensionality of the decompositidW,

is the matrix of basis vectorgv; ...wxk], H is the matrix of
mixture-weights[f, ... hip], andP is the matrix of approxima-
tions[p1 ... pp]. Note that entries of the basis vectors (entries of
matrix W) are not constrained to be non-negative

1We use PLSA as the example topic model to illustrate the naiettiub
the proposed techniques are applicable to any topic modekttpresses



The basic idea of the method is as follows. We transform the dataset, we need the points to lie on a hyperplane such theat-al

data vectors iB such that the transformed data vectors are multi-
nomial distributions (all entries are non-negative and sar).
PLSA can then be applied on this transformed dataset torobtai
basis vectors and mixture weight matrices. The basis \&thois
obtained in the transformed space are transformed backheto
original data space. If we make sure that the transformaditin-

ear, the mixture weights obtained from the PLSA step wilbals
serve as the mixture weights for the decomposition in thgiral
data space. We call this new methRdalPLSA (or more gener-
ally Reatmodel wheremodel denotes any other topic model).

3.1. Naive Approach

The simplest way to transform a dataset witfentries to one with
only positive entries is a simple translation. By adding anbar
greater than the magnitude of the minimum entry in the dgtaie
entries of the dataset can be turned positive.

However, this straight-forward approach will be insuffitie
To understand, note that PLSA (and other topic models) does n
model the given non-negative dataset directly but modeuti
derlying distributions. In other words, PLSA models tiermal-
ized dataset. This implies that the geometry of the normalized
dataset differs based on the magnitude of the offset apglieidg
the translation.

Consider an example of three two dimensional pointé—2.5,
—0.5), B(—1.5,1.5) andC(—2,0.5). The relative distances be-
tween the points are

|AB|:|BC|:|CA|::2:1:1. (5)
Now, consider adding a positive humber 3.5 to all the entides
make the dataset positive. We obtain poiAtd, 3), B(2,5) and
C(1.5,4). What PLSA tries to model, however, is the normal-
ized version of these points, given bBy(0.25,0.75), B’(0.2857,
0.7143) andC’(0.2727,0.7273). The relative distances for these
normalized points are given by

|A'B'|:|B'C’|: |C'A"| 2,75 : 1: 1.75.

Adding 3.5 turned all entries positive but it skewed the treda

geometry of the normalized points. Adding a different canst

instead of 3.5 will skew the geometry differently. For exdenp

adding 4.5 to the points gives u§2,4), B(3,6) andC(2.5, 5),

all of whom correspond to the point (3, 2/3) when normalized.
This example clearly demonstrates the skew introducedéy th

tries are positive and sum t8.IThe latter constraint that all entries
sum to 1 actuallglefineghe 1W-dimensional hyperplane we need.
For example, if we are given a 2-dimensional data set, we theed
hyperplaner; + z2 + z3 = 1 in 3D space where variables, x»
andzs indicate the co-ordinates of the 3D space. A simple trans-
formation onto this hyperplane is not enough - the first aast
implies that we need the points to lie in the portion of thenplthat

is in the positive orthant of th&V + 1)-dimensional space. This
region of the hyperplane, marked by points unit-distancayaw
from the origin on the positive side of each of tH& + 1) axes,
forms the standardV’-simplex. In the 3D case, this simplex is
given by the triangle formed by poinf801), (010) and(100).

To accomplish the first step, we need a set of orthonormal vec-
tors that define the desiré@ -dimensional hyperplane iV +1)-
dimensions. There are infinitely many different sets of amtbr-
mal basis vectors that can be used and as many different ways t
find one such set. The first contribution of this paper is a oth
to obtain one such orthonormal basis. We use a simple rgeursi
method and the details are explained in Appendix A.

Let T denote théV + 1) x W orthonormal matrix where the
columns represent individual basis vectors that define dsé&ell
hyperplane. For example, in the case of 2-dimensional daga,
two unit-vectors defining the plane are giveniiyx [—1, 1, 0] and
k2x[1,1, —2] wherekl = 1/+/2 andk2 = 1/+/6 are appropriate
normalizing factors.

The co-ordinates of the original dataset in (& + 1) dimen-
sional space can now be computed as the columns of matrix

B = (B"T")" = TB. (6)
The new transforme#V + 1)-dimensional data points iB lie in
a space parallel to the desired hyperplane.

The second step is to make sure that all transformed datespoin
are within the standard’-simplex,i.e. all entries are positive. We
check the matriB for negative entries and subtract the least neg-
ative entry from the entire matrix. This is equivalent tostating
all the datapoints in a direction orthogonal to the simpletil all
the co-ordinates are non-negative. Because of the tréomslahe
entries of each datapoint sum to constant, @ayVe rescale the
data by to transform them to lie within the standalid-simplex.

Let the data after this stage of transformation be denotethby
(W +1) x D matrix B.

Consider the example points from the previous secti¢n2.5,

—0.5), B(—1.5,1.5) and C(—2,0.5), whose relative distances

above approach. We need a transformation that also preservewere given by equation (5). Transforming these points as-men

the relative geometry between all the points. This can beraec
plished by transforming the data to not only have positiveies

but to make sure they are also multinomial distributionsywas
explain in the following subsection.

3.2. Real Topic Models

The transformation we propose is based on a very simple intu-

ition. Given a real-valued dataset of dimensionalitywith + en-
tries, it is always possible to express it a§# + 1)-dimensional
dataset where all the points lie on #i-dimensional hyperplane.
However, we need a method to identify the hyperplane we elesir
We know that for PLSA to be applicable on the new transformed

document distributions as mixtures of topics similar to RLS

tioned above, we obtain three-dimensional poidtg0, 0.5977,
0.4023), B’(0.2576,0.6161, 0.1263) andC”(0.1288, 0.6069, 0.2643).
It is easy to verify that

|A'B'|:|B'C'| - |C"A"| :2:1:1,
thus the transformation preserves the local geometry ghdies.
The dataseB is now amenable for PLSA as the entries of each

column are positive and sum to 1. Performing PLSA, we obtain

B~ W(W+1)><KHK><D = 75(W+1)><D7

2Technically, data vectors need not sum to 1 for PLSA to beieatylk.
However, what PLSA models is in fact normalized data vectétaving
this constraint explicitly simplifies the choice of our da@nsformation.
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Fig. 2. lllustration of ReatPLSA. Blue dots show 1000 two-

dimensional datapoints generated by a Gaussian distiibuior-

ners of the red triangle correspond to the basis vectoracril.

Also shown are five randomly chosen points from the datdset il
trated as red stars and their corresponding model apprtiginsa
shown by black squares (see text). 37 data-points lie autbie

red triangle and are thus modeled with error.

whereWV andP are matrices of basis vectors and approximations
expressed in thélW + 1)-space, andH is the matrix of mixture
weights.

We now subjecW to the same transformations that converted
B to B but in the reverse order. We first undo frani the scaling
and translation that matri8 was applied with to obtaiB. Let us
denote the basis vector matrix at this stag@¥sThe final step is
to transform these vectors into the origin&l-dimensional space,
which is accomplished By

w=w"'TT. @)

Since all the transformations involved were linear, it dsplies
that
B~WwxxkHkxD.
The algorithm is summarized in Appendix B in matlab code
which is also available dittp://cns.bu.edu/ ~mvss/upub/

3.3. lllustrationson Synthetic Datasets
3.3.1. Example 1

Let us take an example of 1000 points in 2-dimensions geserat
by a Gaussian distribution to understand the procedure.w®ho
below are five points randomly chosen from this data that wie wi
use to illustrate every step of the process:

—0.6179 —0.6371 0.3201 0.2714 0.7628
0.7010 —0.5129 1.4165 —0.1687 0.1634

The first step is to transform the dataset by projecting dmto t
vectors of T as given by equation (6). We obtain the transformed
datapoints as

—0.1507 —0.6599 0.8046 0.1230 0.6061
0.7231 0.2411 0.3519 —0.2607 —0.4727
—0.5723 0.4187 —1.1565 0.1377 —0.1334

3SinceT is orthonormal T in equation (7) inverses the transformation
done byT7T in equation (6). IfT is not normalized and is just an orthog-
onal matrix, one has to uggnv(T7T) instead ofT in equation (7), where
pinv(.) denotes the pseudoinverse.

The minimum entry in the new transformed dataset turns obéto
-3.1004. Subtracting that from all the entries and re-agalhem
by the sum of the columns, we obtain the points as

0.3171 0.2624 0.4198 0.3466 0.3985
0.4111 0.3593 0.3712 0.3053 0.2825
0.2718 0.3784 0.2090 0.3481 0.3190

Running PLSA on this transformed dataset, we obtain the ba-
sis vectors as

0.6993 0.2343 0.0456
0.2414 0.0199 0.7217
0.0594 0.7459 0.2327

which when transformed back to the original 2-dimensiopake
can be written as

3.0115
3.1210

1.4100
—4.6995

—4.4464
1.1465 |’

and the mixture weights corresponding to the five points @ a
obtained as shown below.

0.3586 0.2272 0.5345 0.3605 0.4481
0.1968 0.3607 0.1337 0.3467 0.3194
0.4445 0.4121 0.3318 0.2928 0.2324

Figure 2 illustrates the results.

3.3.2. Example 2

We now take another example where we created a dataset hy taki
a set of basis vectors and combining them using randomlyrgene
ated mixture weights. The goal in this case is to test whetieer
proposed algorithm can extract the original basis vectdmsnap-
plied on the synthesized dataset.

The dataset was synthesized as follows. Three basis vectors
containing both positive and negative entries were firsegeted
and combined with 50 randomly generated mixture weightgte s
thesize the dataset. The mixture weight entries correspgrtd
each data point were all positive and totaled to 1. The mathai-
mands used to generate the data were as follows:

B = interp2( randn( 10, 3), (1:3),...
(1:.1:10), ’'spline’);

H = rand( 3, 50)."3;

H = H ./ repmat((sum(H)), 3, 1);

whereB corresponds to the matrix of basis vectadtss the matrix
of mixture weights, and the synthesized dataset is giverhby t
matrix productBH

The orginal basis vectors, mixture weights and a subseteof th
data points are shown in Figure 3. Also shown are the bases ex-
tracted by applying th&®ealPLSA algorithm on this dataset. We
point out that the algorithm successfully extracts theindbbases
with which the data was synthesized. This example illustrat
the ability of the algorithm to uncover the original strugtun a
dataset.

The application illustrated by this example is similar te In
dependent Components Analysis (ICA). Figure 3 also shoes th
bases obtained by ICA (using the FastfCalgorithm) for com-
parison and notice that thiReatPLSA bases are better than the

4http://www.cis.hut.fi/projects/ica/fastica/
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Fig. 3. lllustration ofReatPLSA on a synthesized dataset. 50 data points were synéltelsy combining the three basis vectors shown in
panel (a) with 50 randomly generated triplets. All the &iglsum to 1 and are shown in panel (b). A subset of 10 randdmayen data
points thus constructed are shown in panel RgalPLSA was applied to extract three basis vectors from thish®sized dataset, and the
resulting bases extracted are shown in panel (d). For casgpatbases obtained from Independent Components Andl@#As are shown

in panel (e). A simple root-mean-squared error comparigtwéen the extracted and original components showRbatPLSA is better
(RMS errors 0.06, 0.21 & 0.42 for the three components reasgdy) compared to ICA (RMS errors 0.29, 0.34 & 0.7 respesdti).

ICA bases. Unlike ICA algorithm®ReatPLSA decomposition is
a Simplex Decomposition where the mixture weights are atkno
negative and sum to 1. Since this constraint is built intaléngom-
position, the constraint was also incorporated while sgsitting
the dataset so that the algorithm’s ability to uncover thgioal
bases components could be tested. Nevertheless, reldpierze-
tween the proposed algorithm and ICA is a ripe area for rekear
that we leave for future work.

4. DISCUSSION

In this section, we briefly discuss the complexity issuesefiro-

Nonnegative Matrix Factorization to generalized datasktech-
nique called Semi-Nonnegative Matrix Factorization watsoin
duced by [7] where the goals were similar to ours. In parécul
the method generates a decomposition of the form

X+~ FiGi

where the subscripts of the matrices indicate the signs tofesn
allowed in the matrices. Even though the constraints inghase
the decomposition are similar to what we propose, the siitida
end there. Since there are no additional constraints intpore
the matrixG”, the method is not a Simplex Decomposition and
the extracted bases cannot be viewed as corners of a conllex-h

posed method and present some related work. We first point outsurrounding the dataset. In fact, it is argued in the papespite

that Real Topic Models we have presented, even though edspir
by applications ont data, can also be applicable to non-negative
data in certain situations. As we have pointed out, PL.8Ad its
extensions model not the data directly but the data digtabs.

In some situations where the “energies” of data points @eiah-
portant, modeling data distributions is not desirable ané can
model datapoints directly by resorting to the proposed @gogr.

4.1. Complexity

The core of the proposed technique is the original topic mibde
self. The data is preprocessed first to make it ready for tpie to
model and once the basis vectors are obtained from the taplein
they are processed back to the original data space. The mest i
sive step in the preprocessing of data involves a matrixipliih-
tion. Given this fact and the fact that most topic models ewpl
iterative algorithms to estimate parameters, the topicehodre
computations act as the complexity bottleneck. Thus, thm-co
plexity of the proposed approach depends on the complekityeo
algorithms used for the topic model computations.

4.2. Related Work

The author is not aware of any work in the topic modeling commu
nity to extend their methodologies for data with negatived pas-
itive entries. It is understandable as the main motivati@ne is to
analyze text corpora where one does not encounter suchetiatas

unsatisfactory results, that the obtained basis vecteraralogues
of centroids obtained from a clustering algorithm on theaddh
addition to this advantage of interpretability, the maivattage
of the technique presented in this paper over this methobeis t
generality of the approach. The approach of Real Topic Model
allows one to model data using any extension of PLSA whereas
in Semi-Nonnegative Matrix Factoization, there is no pipred
way to impose priors such as dirichlet or log-normal disttidns.
And the modular nature of our approach ensures that anyefutur
algorithmic advances in estimation can be incorporatdd Bgay.
There has been a lot of work in the computational geometry
field in tackling the problem of constructing convex-hulis fr-
bitrary dimensional data. For a long time, solutions werevkm
only for even-dimensional data (and the 3-dimensional)case
til [8] finally proposed a general solution. Once a convek-fsu
found, theoretically every data-point can be represenseal mix-
ture of points on the corners of the hull though the algoritdn
not explicitly compute the mixture weights. In computatibge-
ometry, the focus is on finding fll convex hull and obtaining
exact solutions. In real topic models, the number of basis ve
tors one desires is often far lesser than the dimensionaflitiie
dataset. Thus, the basis vectors can be thought of repimgent
convex-hull-like structure in lower dimensions. And topiodels
do not produce exact results as iterative algorithms suétivasr
variational methods are often employed to arrive at thetwis.
In spite of these differences, it will be instructive to ccamp the
two approaches and we leave that for future work.

However, there has been some work to extend the technique of

5There is another factorization model also sometimes wdeto as
PLSA given byP(w, d) = >, P(t)P(w(t)P(d|t). This new model also
can be applied oa- data using the proposed method to obtairbases.
We skip details due to lack of space.

5. CONCLUSIONS

In this paper, we introduced a new method that enables one to
apply topic models such as PLSA, LDA and other extensions of
PLSA on data that has both negative and positive entries.eMor



specifically, we introduced the idea ofSimplex Decomposition

of which PLSA and extensions are examples - and showed how it

can be generalized to data withentries. A Simplex Decomposi-
tion decomposes a dataset into basis vectors that form therso
of a simplex surrounding the dataset. We showed this gegrimetr
the case of PLSA. We then described how any arbitrary dataset
be linearly transformed into the next higher dimension &haey
are represented as data distributions. This allows thdcapioin

of topic models on the transformed dataset. We presentedt an a

gorithm to compute the transformation and illustrated tiethod
by example applications on synthetic datasets. We alsoisisd
the complexity issues of the proposed algorithm and reuierge
lated work. There are several potential applications of Wdrk
for tasks such as feature extraction, clustering and ¢ieaton
among others. The work brings the power of statistical topoci-
els to datasets without the need to have non-negativityt@ints.
Among other directions, a promising area of future work wioul
be to compare and contrast the performance of these topielmod
with standard machine learning algorithms.
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Appendices
A. CONSTRUCTIONOF T

In this appendix, we propose a method to generate a s&t of
orthonormal(W + 1)-dimensional vectors that span the standard
W-simplex. We first find a set of orthogonal vectors which are
normalized later. Notice that since each vector of the mdigs
parallel to the simplex, the sum of all entries in the vectwsd
sum to zero. The entries of every point within the simplex stion
the same constant and a vector, being the difference of timspo
will have entries that sum to zero. Given this constraintoan
thogonal set of vectors can be found in an inductive fashased

on the two basic observations. L€ denote aV x (W — 1)
matrix of (W — 1) orthogonal vectors. Lely andOy denote

W -vectors where all the entries are 1's and 0’s respectivgiin-
ilarly, let 1,5, and0,«» denotea x b matrices of all 1's and 0's
respectively. It can be easily shown that the malfixy 1) given

by

T 1 L
{ 4}” w if W is even, and
Ow-_1y —W
{T<W+1)/2 O s1y/2xw-1)/2 Lawin)/2
Ow+n/2xw-172 Twvgny 2 —Lwiy,2

if W is odd, is orthogonalT 4 is then normalized to obtain
an orthonormal matrix.

Given these rules and the fact tfiRtf is an empty matrix, one
can easily build an algorithm to find the matfy . Pseudocode
for the algorithm is shown below.

% m - dimensionality of data
% Find (m+1)-by-m orthonormal matrix tc.
idxs = [m+1]; i = m+1; tc = [];
while (i"=1)
idxs = [idxs floor(i/2)];
i = floor(i/2);
end

for i=idxs(end-1:-1:1)
tcs2 = size(tc, 2);
tn = [tc *[eye(tcs2) zeros(ics2, tcs2)];...
tc *[zeros(tcs2, tcs2) eye(tcs2)]];
tn = [tn [ones(floor(i/2), 1);...
-ones(floor(i/2), 1)]I;

if rem(i, 2)
tn = [tn ones(i-1, 1)];
tn = [tn; [zeros(1, i-2) -(i-1)]];
end
tc = tn;
end
tc = tc./repmat(sqrt(sum(tc.”2)), m+1, 1);

B. REAL TOPIC MODELS: ALGORITHM

This appendix provides matlab code for the entire algorithm

%
%
%
%
%
%

Inputs: m-by-n data matrix v, Number of
desired components r.
Outputs: m-by-r basis vector matrix w
r-by-n mixture-weight matrix h
Form the orthonormal transformation
matrix tc (see Appendix A)

%
nv = (v
mnv
msc

transform the data into (n+1) dimensions
*1c)’;

min(nv(:)); nv =
sum(nv(;, 1)); nv =

= nv-mnv;
= nv ./ msc;
% Run Topic Model

[w, h] = topic_model(nv, r, param);

% Transform w back to orig dimensions
W = WMSC; W = w+mny;
w = (W' *tc);
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