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Abstract. In this paper we first present a uniformity property that characterises optimal channel assignments for networks arranged as
cellular or square grids. Then, we present optimal channel assignments for cellular and square grids; these assignments exhibit a high value
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1. Introduction

The enormous growth of wireless networks has made the ef-
ficient use of the scarce radio spectrum important. A “Fre-
quency Assignment Problem” (FAP) models the task of as-
signing frequencies (channels) from a radio spectrum to
a set of transmitters and receivers, satisfying certain con-
straints [9]. The main difficulty in an efficient use of the
radio spectrum is the interference caused by unconstrained
simultaneous transmissions. Interferences can be eliminated
(or at least reduced) by means of suitable channel assignment
techniques, which partition the given radio spectrum into a
set of disjoint channels that can be used simultaneously by
the stations while maintaining acceptable radio signals. Since
radio signals get attenuated over distance, two stations in a
network can use the same channel without interferences pro-
vided the stations are spaced sufficiently apart. The minimum
distance at which channels can be reused with no interfer-
ences is called the co-channel reuse distance (or simply reuse
distance) and is denoted by o.

In a dense network — a network where there are a large
number of transmitters and receivers in a small area — inter-
ference is more likely. Thus, reuse distance needs to be high
in such networks. Moreover, channels assigned to nearby sta-
tions must be separated in value by at least a gap which is
inversely proportional to the distance between the two sta-
tions. A minimum channel separation §; is required be-
tween channels assigned to stations at distance i, withi < o,
such that §; decreases when i increases [8]. o is said to
place the co-channel reuse distance constraint, and the vector
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§ = (61, 82, . .., 85—1) is said to place the channel separation
constraint on the channel assignment problem.

The purpose of channel assignment algorithms is to assign
channels to transmitters in such a way that (1) the co-channel
reuse distance and the channel separation constraints are sat-
isfied, and (2) the span of the assignment, defined to be the
difference between the highest and the lowest channels as-
signed, is as small as possible [2].

This paper has two significant contributions:

1. A characterisation of optimal channel assignments for cel-
lular and square grids. We essentially show a nice unifor-
mity across the grid that every optimal assignment must
satisfy. (See section 3.)

2. Optimal channel assignments for cellular and square grids
where the channel separation between adjacent stations is
large. We prove an upper bound on §; for such optimal
channel assignments. This upper bound is greater than the
value of §; exhibited by our assignments. Based on empiri-
cal evidence, we conjecture that the value our assignments
exhibit is a tight upper bound on §;. (See section 4.)

In section 2 we formally define the problem of channel
assignments and its formulation as a colouring problem, and
provide a brief literature survey. We also outline the general
strategy we use for our optimal colourings discussed in sec-
tion 4. In section 3 we first define the cellular (section 3.1) and
square (section 3.2) grids, and point out some useful proper-
ties of these grids. Then, in section 3.3, we prove a charac-
terisation of optimal colourings for cellular and square grids.
In section 4 we present our colourings and prove that they are
optimal. Then, in section 5, we present an upper bound on
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the value of the channel separation among adjacent stations
as witnessed by optimal colourings.

2. Preliminaries

Formally, the Channel Assignment Problem with Separation
(CAPS) can be modelled as an appropriate colouring prob-
lem on an undirected graph G = (V, E) representing the net-
work topology, whose vertices in V' correspond to stations,
and edges in E correspond to pairs of stations that can hear
each other’s transmission [2]. The colour assigned to a par-
ticular vertex corresponds to the frequency channel assigned
to the corresponding station. For a graph G, we will denote
the distance between any two vertices in the graph, i.e., the
number of edges in a shortest path between the two vertices,
by dg (-, ). (When the context is clear, we will denote the
distance as simply d (-, -).) CAPS is then defined as:

CAPS (G, 0,4). Given an undirected graph G, an integer
o > 1, and a vector of positive integers s = 61,62, ...,
ds—1), find an integer g > 0 so that there is a function
f:V — {0,..., g}, such that for all u,v € G, for each i,
1<i<o—1,ifdu,v) =i,then|f(u) — f(v)| = 6.

This assignment is referred to as a g-L(§, 82,;. .,
8o—1) colouring of the graph G_[7], and CAPS (G, 0,9) is
sometimes referred to as the L(8) colouring problem for G.
Note that a g-L(61,82,...,85—1) uses only the (g + 1)
colours in the set {0, ..., g}, but does not necessarily use all
the (g + 1) colours. A g-L(81, 682, ...,8,—1) colouring of G
is optimal iff g is the smallest number witnessing a solution
for CAPS (G, o, §).

Finding the optimal colouring for general graphs has
been shown to be NP-complete. The problem remains
NP-complete even if the input graphs are restricted to planar
graphs, bipartite graphs, chordal graphs, and split graphs [4].
Most of the work on this problem has dealt with specific
graphs such as grids and rings, for small reuse distance (o)
values, and for small channel separation (§;) values, e.g., op-
timal L(1, 1) colourings for rings and bidimensional grids [1],
optimal L(2, 1) and L(2, 1, 1) colourings for hexagonal, bidi-
mensional, and cellular grids [2], etc. Recently, Bertossi
et al. [3] exhibited optimal L(é1, 1,...,1) colourings, for
81 < |o/2], for bidimensional grids and rings. (See [3] for a
succinct literature survey of this problem.) Below, we refer to
L(-,1,...,1) colourings by L(-, 1) colourings. .

As pointed out in [2], a lower bound for the L(l,qlk)
colouring problem is also a lower bound for the L(8, 1),
8 > 1. Given an instance of CAPS, consider the augmented
graph obtained from G by adding edges between all those
pairs of vertices that are at a distance of at most o — 1. Clearly,
then, the size (number of vertices) of any clique in this aug-
mented graph places a lower bound on an L(1, 15_1) colour-
ing for G; the best such lower bound is given by the size of a
maximum clique in the augmented graph.

In each graph G, for each o, we identify a canonical sub-
graph, T (G, o), of the graph so that the vertices of T(G, o)

SHASHANKA ET AL.

induce a clique in the augmented graph of the graph. We will
refer to T (G, o) as a tile. When the context is clear, we will
refer to the size of T (G, o) simply as c(o).

Most (but not all) of the assignment schemes described in
this paper follow the pattern: for a given graph G, and for a
given o,

(1) identity T (G, o),

(2) find the number of vertices in T (G, o), and hence a lower
bound for the given assignment problem,

(3) describe a colouring scheme to colour all the vertices of
T(G,o0),

(4) demonstrate a tiling of the entire graph made up of
T(G,o0) to show that the colouring scheme described
colours the entire graph, and

(5) show that the colouring scheme satisfies the given reuse
distance and channel separation constraints.

3. A characterisation of optimal colourings

We first introduce the conventions we follow to represent
square grids and cellular grids. We explain tilings in both
grids, and define some notation. Then we present our charac-
terisation of optimal colourings in cellular and square grids.

For any d-dimensional lattice £, the minimal distance in
the lattice is denoted by w(L). The infinite graph, denoted
G(L), corresponding to the lattice £ consists of the set of lat-
tice points as vertices; each pair of lattice points that are at a
distance u (L) constitute the edges of G(L).

The lattice Z¢ is the set of ordered d-tuples of integers, and
A, is the hyperplane that is a subset of Z¢*!, and is charac-
terised as the set of points in Z4+! such that the coordinates
of each point add up to zero. w(Z4) = 1, and the minimal
length vectors in Z¢ are the unit vectors in each dimension.
For eachd > 0O, foreach i, j,0 < i,j < d,i # j, define
/\?j = (x0,...,X%q), where x; = 1, x; = —1, and for each

k,0 <k <d k#i,jxi=0. Then, u(Ag) = +/2, and
the set of minimal length vectors in Ay is {)»j.ij | i,j, 0 <1,
Jj <d, i# j}. (See[5,10] for more on these lattices.)

The infinite 2-dimensional square grid is, then, G (Zz), and
the infinite 2-dimensional cellular grid is G(A3).

3.1. Cellular grids

For a given value of o, two kinds of tiles can be identified:
triangular and hexagonal. The tiles are shown in figure 1(a).
It can be easily shown that:

Lemma 1. 1. The number of vertices in a triangular tile cor-
responding to reuse distance o, denoted by cr (o), is given by
cr(oc)=o0(c +1)/2.

2. The number of vertices in a hexagonal tile corre-
sponding to reuse distance o, denoted by cg (o), is given by
c(0) = (3024 (0 mod2)) /4. Thus, when o = 2k + 1(odd),
c(o) =3k* + 3k + 1.
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Figure 1. Cliques in cellular and square grids.
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Figure 2. Basis vectors in Aj.
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Figure 3. Coordinates of the corners of a hexagonal tile.

From the above lemma, we observe that for a given value
of o, the size of a hexagonal tile is greater than the size of a
triangular tile. As mentioned in the previous section, the size
of the maximum clique, i.e. cy (o) places a lower bound on
the colouring of G(A;). Henceforth, for G(A7), we consider
only hexagonal tiles and the word tile refers to hexagonal tile
unless otherwise mentioned. Also, we refer to ¢y (o) simply
as c(o).

For a particular o, hexagons are regular with sides of
[o/2] vertices if o is odd. In case a is even, alternate sides
of the hexagon are equal and consecutive sides have ¢ /2 and
[(o + 1)/2] vertices, respectively.

Figure 2 shows the coordinate system we use for represent-
ing vertices in A, where (0, 1, —1) and (1, —1, 0) indicate the
basis vectors i and j. In the table in figure 3, we list the co-
ordinates of the corners of a hexagon in clockwise order, for
various values of o. We start with the left-most vertex, which
we refer to as the origin and assign (0, 0) as its coordinates.
Consider the arrangement of tiles as shown in figure 4. It is
clear that such an arrangement will tile all of A,. Note that
any translation of this tiling will also tile A,.

In such a tiling, we will refer to two tiles as neighbours if
there is an edge e; of one and an edge e» of the other such
that at least two points on e; have neighbours on e, and vice
versa. In such a tiling of A,, every tile is surrounded by
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Figure 4. Tiling of Ay and Z2.

six neighbouring tiles. For any tile H, we will refer to the
neighbouring tiles as Hy, Hy, ..., Hs as shown in figure 4.
If the coordinates of the origin of H are (0, 0), then the ori-
gins of Hy, Hi, ..., Hs will have coordinates (—|o/2], —0),
([o/21, =10 /2]), (0, [0/21), (Lo /2], 0), (=[0 /2], l0/2])
and (—o, —[0/2]), respectively. These points are marked in
figure 4. The edge of tile H which is adjacent to the tile H;
will be denoted by #;.

Definition 1. In a cellular grid tile, we define a diagonal to be
a line formed by all vertices having the same ith coordinate.
In a tile with origin (io, j,), diagonal corresponding to the
coordinate i, is represented as L;c.—;o and (i — i,) is called
the diagonal number.

In a tile corresponding to reuse distance o, there are o
diagonals. Figure 5 shows the diagonals in a cellular grid.

3.2. Square grids

As mentioned in section 2, the size of the maximum clique
for a particular o places a lower bound on the colouring of
G(Z?). The following lemma gives a formula for the size of
such a clique which is also referred to as a tile.

Lemma 2. The number of vertices in a tile corresponding to
reuse distance o, denoted by ¢ (o) is given by ¢(o) = [02/2].
Thus, when o = 2k + 1 (odd), c¢(0') = 2k% + 2k + 1.

For a particular o, tiles are diamonds with their diagonals
along the X and Y axes (as shown in figure 1(b)) and every
side contains [o/2] vertices. They tile the entire grid Z*. In
the case of odd o, every corner of the tile corresponds to
a vertex on the grid. We use the vectors (1,0) and (0, 1)
as the basis vectors i and j for representing points in Z2.
Then, the coordinates of the vertices of the corners of a tile
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Figure 5. Verticals and diagonals.

Figure 6. Possible tiling of 72 and A, forodd o.

(in clockwise order, starting with the left-most vertex) are
(0,0), (lo/2]),10/2]), (@ — 1,0) and (l/2], —[o/2]). In
the case of even o, only opposite corners of the tile along the
X direction correspond to vertices on the grid, their coordi-
nates being (0, 0) and (¢ — 1, 0).

Consider the arrangement of tiles as shown in figure 4. It
is clear that such an arrangement will tile all of Z?. Note that
any translation of this tiling will also tile Z?.

In such a tiling, we will refer to two tiles as neighbours if
there is an edge e; of one and an edge e> of the other such
that at least two points on e; have neighbours on e, and vice
versa. In such a tiling of Z2, every tile is surrounded by four
neighbouring tiles. For any tile H, we will refer to the neigh-
bouring tiles as Hy, H1, H and H3. If the coordinates of the
left-most vertex of H (which we refer to as the origin) are
(0, 0), then the origins of Hy, Hy, H> and H3 will have coor-
dinates (—[o0/2], [o/21), ([0/21, 0/2]), (Llo/2], —[o/21)
and (—[0 /2], —|lo/2]), respectively. These points are shown
in figure 4. The edge of tile H which is adjacent to the tile H;
will be denoted by ¢;.

There is another kind of tiling possible in both cellular and
square grids for odd reuse distances, as shown in figure 6 for
o = 5. We shall refer to the tiling shown in figure 4 as tiling A
and the one in figure 6 as tiling B.

Definition 2. In a square grid tile, we define a vertical to be
a line formed by all vertices having the same X-coordinate.
In a tile with origin (i, j,), a vertical corresponding to the
coordinate i is represented as V; and (i — ip) is called
the vertical number.

c—lo

d;......'...dz

e o o o Do o o o

Cellular Grid Square Grid

c=5

Figure 7. Bounding box B(p) with edges marked.

Definition 3. In a square grid tile, we define a diagonal to
be a line of the form i — j = ¢, where ¢ is a constant. It
is represented as D;, where i, called the diagonal number is
given by (i — j)modo.

In a tile corresponding to reuse distance o, there are o di-
agonals/verticals as the case may be. Figure 5 shows verticals
and diagonals of a square grid tile.

Definition 4. 1. Consider a point p in a square/cellular grid
and consider all points which are at a distance o from p,
where o is the reuse distance. In the case of square grids,
all these points form a diamond centered at p and in the case
of cellular grids, they form a hexagon centered at p. This di-
amond/hexagon will be called the bounding box surrounding
point p and will be denoted by B(p). The edges, considered
in a clockwise direction, are denoted by dy, di, . . ., d3 in case
of square grids and dy, dy, . . ., ds in case of cellular grids, as
shown in figure 7.

2. Consider the bounding box for point p. Every edge
contains o — 1 vertices apart from the two corners. Each cor-
ner, which belongs to two edges d; and dm, is taken to be
a part of the second edge dl.+—1, where i refers to (i mods), s
being 4 in case of square grids and 6 in case of cellular grids.
For each edge, we number the vertices consecutively, clock-
wise, starting with 0 being assigned to the left-corner vertex.
These numbers are called position numbers. This is shown in
figures 8—11.
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Figure 10. Square grid bounding box for o = 4 with position numbers.
3.3. Optimal colouring schemes

A colouring scheme is optimal if it uses the smallest possible
number of colours. In other words, a colouring which uses
colours from the set {0, 1, ..., g} will be optimal if it uses the
smallest possible value for g. From lemmas 1 and 2, we know
that ¢(o) is a lower bound on the number of colours used. We
are concerned only with such colouring schemes which use
exactly c(o) different colours.

We already know that o is the minimum distance at which
channels can be reused. In other words, the same colour can
be used for vertices which are at distance o or greater. The
following lemma establishes that in an optimal colouring the
nearest vertex where a colour is reused is no more than dis-
tance o away.

Lemma 3. Consider an optimal colouring scheme for a wire-
less network modelled as an infinite square or cellular grid
with reuse distance o. For a given point p, there exists at least
one point at distance o from p which has the same colour
as p.

Proof. Let us assume that, on the contrary, there is no point
at distance o from p which has the same colour as p. Thus,
no point inside, or on the boundary of, B(p) is assigned the
same colour as that of p.

Now, consider one of the edges of B(p), say dp and a tile
inside B(p) such that one of its edges 7y is completely con-
tained in this edge of B(p). Clearly, p is not in this tile. Since
we have an optimal colouring, one of the points in the tile
must be assigned the same colour as the colour assigned to p.
This is a contradiction, and hence the result. O

We now present a theorem using which we will be able to
establish an important property of optimal colouring schemes.

Theorem 1. Consider an optimal colouring scheme for a
wireless network modelled as an infinite square or cellular
grid with reuse distance o. For every point p, there is a po-
sition number n, such that each point corresponding to this
position number on each edge of the bounding box surround-
ing p has the same colour as p. Moreover,n = [o/2] — 1 or
n=1J[o/2].

Proof. Consider the edge dy of the bounding box around
p, B(p). Consider the k different tiles, each of whose edge
to is a part of the edge dy of B(p), where o = 2k + 1 for odd
o and 0 = 2k for even o. Refer to figures 8—11.

Let P (i) denote the sequence of position numbers on d of
B(p) that are on the edge #( of the ith of these £ tiles. In the
case of odd o, P (i) are given by:

P()=(1,....k+1),

PQ2)=(2,3,....k+2),
(D

P(k);(2+(k—2),2+(k—1),...,2k).
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In case o is even, P (i) are given by:

P()=(1,2,...,k),

PQ)=(2,3,....k+1),
(2)

Pk)=02+k=-2),2+*k—1),...,2k—1).

Since the colouring is optimal, the colour ¢, that the
point p is coloured in, must appear somewhere on each of
these tiles. Except for the edge 7y, each of these tiles is com-
pletely contained within B(p). Thus, the colour ¢ must appear
on the edge 7y of each of these tiles, otherwise, the reuse con-
straint is violated. Since no pair of vertices with position num-
bers 1, 2, ..., 2k on the edge dy of B(p) are at a distance o,
it must be the case that the colour c is assigned to some vertex
that is common to all the above tiles. In case of odd o, as seen
from equation (1), the only two common vertices are the ones
with position numbers k and k + 1, and hence, one of these
two vertices must be assigned the colour c. In case of even o,
we see from equation (2) that the only common vertex is the
one corresponding to position number k, and hence, it has to
be assigned the colour c. A similar argument establishes that
on each edge of B(p), the vertices corresponding to position
numbers k and k 4 1 in case of odd o and k in case of even o
are the only possible candidates for being assigned colour c.

Now, in case of odd o, let ¢ be the vertex, corresponding
to position number k on the edge dy of B(p), that is assigned
colour ¢ (see figures 9 and 11). Suppose, by way of contra-
diction, the vertex with position number k + 1 on the edge d;
of B(p) is assigned colour c¢. Let us name this vertex x. We
will now consider cellular and square grids separately in two
different cases.

Case 1 (Cellular grids). Consider the bounding box B(q).
The edge d> of B(g) passes through the vertex with position
number k on the edge d; of B(p) as shown in figure 9. By
the above argument, one of the two vertices with position
numbers k or k + 1 on this edge d» of B(g) must be as-
signed colour c. But both these vertices are at a distance less
than o from the vertex x. Therefore, x cannot be assigned
colour ¢, implying that the vertex with position number k on
the edge d; must be assigned colour c.

Case 2 (Square grids). Consider the bounding boxes B(q)
and B(x). Let r be the point of inter-section of the edges d
of B(q) and dy of B(x) (see figure 11). If both ¢ and x are
coloured c, it follows that r should be assigned the colour c.
This is not possible because r lies within the bounding box
B(p) of point p which is also coloured c. This implies that
the vertex with position number k on the edge d; must be
assigned colour c.

Similar arguments in both cases above establish that, if the
vertex with position number k on any one edge of B(p) is
coloured the same as the colour of p, then on each edge of
B(p), the vertex with position number k& is also coloured the
same as p. U
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The following characterisation of optimal colourings of
cellular and square grids is an immediate consequence of the-
orem 1.

Theorem 2. Given o, and given a tiling of a cellular or
square grid by tiles (for o), a colouring with reuse distance o
is optimal iff all the tiles in the tiling are identical in their
colour assignment.

Recall the definition of tilings A and B from section 3.2
(see figures 4 and 6). From the proof of theorem 1, we make
the following observation.

Corollary 1. Suppose o = 2k + 1, and we have an optimal
colouring of the cellular (square) grid. If for any point p in
the grid, the vertex corresponding to position number k on an
edge of the bounding box of p has the same colour as that as-
signed to p, then the tiling of the grid, by identically coloured
tiles, corresponds to tiling B; if the position number is k + 1,
then the tiling of the grid corresponds to tiling A.

4. Optimal L5, Tg_z) colourings for G(A») and G(Z?)

In this section, we deal with optimal frequency assignment
schemes for wireless networks modelled as cellular grids
and square grids. We first present an L(81, l5—2) colouring
scheme of G(A,) for the case where reuse distance is odd
ie., o = 2k + 1,k € {1,2,...}. This is followed by an
L(61, 15—2) colouring scheme of G(Z?) for all values of o.
The colouring schemes presented here correspond to tiling A.

4.1. Cellular grids

We present a colouring scheme where §; varies as the square
of o, for o > 5, 0 odd. We note that the colouring of the
entire cellular grid is achieved by colouring one tile and re-
producing the same colouring in all the tiles present in the
grid. Recall that the number of vertices c(o), in a tile cor-
responding to an odd reuse distance 0 = 2k + 1 is equal to
3k + 3k + 1 (see lemma 1). From the above fact and from
theorem 2, we make the following observations (refer to fig-
ure 12).

Lemma 4.

1. Colouring c(o) points starting from the vertex of a tile
along the direction j is equivalent to colouring all the di-
agonals of a tile in the following order:

Lo, Lgy1, Ly, Lgyo, ..., Lg—1, Lok, L.

2. Along a line i = m, where m is a constant, any pair of
points which are at a distance c (o) apart will have the same
colour assigned to them.

3. Consider a point (p,g) on the line i = p. The point
(p+1,9g —3k — 1) onthelinei = p + 1 will have the
same colour as (p, q).
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Figure 12. L(é1, 16,2) colouring foro = 7.

From lemma 4, we see that a colouring for c(o) points
along a line i = m for some arbitrary m describes the colour-
ing for the entire grid.

The following colouring scheme is shown in figure 12. To
colour along the line i = 0, we proceed as follows: Starting
with the point (0, 0) which is assigned the colour 0, we assign
consecutive colours to every third vertex, and wrap around
after the c(o)th vertex. This will colour all the c(o’) points in
three passes uniquely. This can be easily seen because c(0) =
(k) = 32 4+3k+1=1 (mod 3). Consecutive sets of c¢(o)
vertices along this line follow the same colouring pattern.

Formally, this colouring scheme can be expressed as fol-
lows. Let x (i, j) represent the colour assigned to the vertex
(i, j) and x’(j) represent the colour assigned to the vertex
0, j),ie. x'(j) = x(0, j). We first give a formula for x’(j)
and then derive an expression for x (i, j).

0, j =0 (mod3),
X' (D=3 p+2k2+2k+1, j=1(@mod3),
p+k*+k+1,  j=2(mod3),

where j = jmodc(o) and p = |j/3]. Now, from lem-

ma 4.3, we can easily derive that
xG, ) =x"(j+iGk+1).

Theorem 3. Forallo =2k+1,k ={1,2,. .ﬁ.}, the colouring
scheme described above is an optimal L(§1, 15—2) colouring
for G(Ay), with §; = k2. Moreover, this is a constant time
colouring scheme.

Proof. Fromlemma 1, c(o) is a lower bound. We can easily
see that each vertex in the tile is assigned a unique colour from
the set {0, 1, ..., c(o) — 1}. This implies that the optimality
condition is satisfied.

Again, the above scheme ensures that corresponding
points in neighbouring tiles have the same colour and are ex-
actly o distance apart. Thus, the re-use constraint is satisfied.

To derive the value of §1, we proceed as follows. Consider
a point (i, j) in the grid. Its six neighbours are (i, j — 1), (i +
Ljp@+1,j+D,6Gj+D,G—-1,j)and @ —1,j—1).
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(+1)) (x G, j) +2k2 +3k + 1)
(i+1,j+0D (G, )+ k2 +2k+1)
G.j+1 (x G, j) +2k2 + 2k + 1)

(X G, )+,
X G, ) +2k2 + k)

(@—-1))
(i—-1j=-D

Figure 13. Colours (modc(o)) assigned to neighbours of (i, j) by the

scheme x.

The colour assigned to (i, j) according to the above
scheme will be x (i, j) = x'(j +i(Bk + 1)).

The table in figure 13 shows the colours assigned to the
neighbours of (7, j). (All the colour expressions are modulo
c(o).)

From the table in figure 13, we see that the least difference
between the colours assigned to neighbouring points is k2.
Hence, §; = k2.

From the formula for x (7, j), it can be easily seen that
given any arbitrary point (7, j) in the grid, the colour assigned
to (i, j) can be computed in constant time. O

Lemma 5 notes the values of §, and 83 for the above
colouring.

Lemma 5. Forallo =2k + 1,k = {1, 2, ...}, the colouring
scheme described above has the properties that §, = k and
8 = 1.

Proof. Similar to the proof of theorem 3 above, using the
table in figure 13 twice proves the value of §;. The value of
83 is 1 by construction. ]

4.2. Square grids

We present colouring schemes where §; varies as the square
of o, for 0 > 4. There are two different schemes, one for
the case where ¢ is odd and one for even o. We note that the
colouring of the entire square grid is achieved by colouring
one tile and reproducing the same colouring in all the tiles
present in the grid.

Odd o. Recall that the number of vertices ¢(o), in a tile
corresponding to an odd reuse distance o = 2k + 1 is equal
to 2k% + 2k + 1 (see lemma 2). From the above fact and
from theorem 2, we make the following observations (refer to
figure 14):

Lemma 6.

1. Colouring c(o) points starting from the vertex of a tile
along the direction j is equivalent to colouring all the di-
agonals of a tile in the following order:

Vo, Vi, Vak, Vi1, ..., Vig2, Vi, Vi

2. Along a line i = m, where m is a constant, any pair of
points which are at a distance c (o) apart will have the same
colour assigned to them.
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i—-1))
@j+1

i+1,))
@j—1

(QG, )+ k> +2k+1)
(QG, )+ K2 +k+1)
Q. j) +k%)

QG )~k —k—1)

Figure 15. Colours (modc(c)) assigned to the neighbours of (i, j) by the

scheme 2 when o is odd.
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9| 18| 2| 11| 20 !
0 4
5| 14| 23
21 7
1| 10
17
13

Figure 14. L(§, L,_Q) colouring foro = 7.

3. Consider a point (p, g) on the line i = p. The point
(p+1,g+2k+ 1)onthelinei = p + 1 will have the
same colour as (p, q).

From lemma 6, we see that a colouring for c¢(o) points
along a line i = m for some arbitrary m describes the colour-
ing for the entire grid.

The following colouring scheme is shown in figure 14. To
colour along the line i = 0, we proceed as follows: Starting
with the point (0, 0) which is assigned the colour 0, we assign
consecutive colours to every second vertex, and wrap around
after the c(o)th vertex. This will colour all the c¢(o’) points in
two passes uniquely. This can be easily seen because c(o) =
¢’ (k) = 2k? + 2k + 1 is odd and hence, points coloured in the
first pass will not be repeated again. Consecutive sets of c(o)
vertices along this line follow the same colouring pattern.

Mathematically, this colouring scheme can be expressed
as follows. Let (i, j) represent the colour assigned to the
vertex (i, j) and €/(j) represent the colour assigned to the
vertex (0, j), i.e. Q'(j) = (0, j). We first give a formula
for ©'(j) and then derive an expression for (i, j).

0, J even,

Q) = _
) p+k*+k+1, jodd,

where j = jmodc(o) and p = |j/2]. Now, from lem-
ma 6.3, we can easily derive that

QG j)=(j—iCk+ D).

Theorem 4. Forallo = 2k+1,k = {1, 2, ...}, the colouring
scheme described above is an optimal L (41, Ia _2) colouring
for G(Z?), with 8; = k2. Moreover, this is a constant time
colouring scheme.

Proof. From lemma 2, c¢(o) is a lower bound. We can easily
see that each vertex in the tile is assigned a unique colour from
the set {0, 1, ..., c(o) — 1}. This implies that the optimality
condition is satisfied.

e
3. 197 P
N
2 /14 1 N\23 P
/// /(/ /,/ // /’DS
117, 6| 22711, \27 P
T T T N\ D

, , L - L > 7
16" 5,21, 1d. 24 15~

N 207 9] 25,7 14
T T 730

24, 137
) 7 29

© 12 28
Figure 16. L(81, io_z) colouring for o = 8.

Again, the above scheme ensures that corresponding
points in neighbouring tiles have the same colour and are ex-
actly o distance apart. Thus, the re-use constraint is satisfied.

To derive the value of §;, we proceed as follows. Con-
sider a point (i, j) in the grid. Its four neighbours are
-1/, j+D,G+1j)and (G, j—1).

The colour assigned to (i, j) according to the above
scheme will be Q(i, j) = Q'(j — i (2k + 1)).

The table in figure 15 shows the colours (modulo c(o))
assigned to the neighbours of (i, j).

From the table in figure 15, we see that the least difference
between the colours assigned to neighbouring points is k2.
Hence, §; = k2.

From the formula for Q(i, j), it can be easily seen that
given any arbitrary point (7, j) in the grid, the colour assigned
to (i, j) can be computed in constant time. O

Even 0. 'We now present a colouring scheme for even o,
o >4,ie. 0 =2k, ke {2,3,...}. We first note that the total
number of points in a tile in terms of k will be equal to 2k.
Since colouring of the entire grid is achieved by colouring one
tile and reproducing the same colouring in all tiles of the grid,
description of the colouring for a single tile is sufficient.

The colouring scheme is shown in figure 16. Alternate di-
agonals are coloured consecutively starting with Dy, i.e. the
following diagonals Dy, D, ..., Dg_2, D1, D3, ..., Ds_1
are coloured in order. Starting with the origin of the tile which
is assigned colour 0, points are coloured consecutively within
each diagonal.

Let (7, j) be the colour assigned to the point (i, j) in the
grid. It can be mathematically expressed as follows:

Q. j)= {(z’ - j)2m0d2ka+ L(i +j)2mod2kJ

+ (G + j) mod 2)k>.
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@i—1) QG, j)—k?
@ j+1 QU jH)—k>—k+1,
if (i + j)mod2k = 2k — 1
Q(, j) — k2 + 1, otherwise
@+1,5) QG, j)—k2+1,

if (( + j)mod2k =2k — 1
Q3, j) — k% + k + 1, otherwise
Q, j) — 2k +k,

if ( — j)mod2k =2k — 1
Q3 j) — k2 + k, otherwise

@GJj=D

Figure 17. Colours (mod c(o)) assigned to the neighbours of (i, j) by the
scheme  when o is even.

Theorem 5. For all 0 = 2k, k = {2,3,.. .i, the colouring
scheme described above is an optimal L(§1, 1,—2) colouring
for G(Z?), with 8; = k? — k — 1. Moreover, this is a constant
time colouring scheme.

Proof. From lemma 2, c¢(o) is a lower bound. We can easily
see that each vertex in the tile is assigned a unique colour from
the set {0, 1, ..., c(o) — 1}. This implies that the optimality
condition is satisfied.

Again, from the formula, we see that corresponding points
in neighbouring tiles have the same colour and are exactly o
distance apart. Thus, the re-use constraint is satisfied.

To derive the value of §1, we proceed as follows. Consider
the neighbours of an arbitrary point (i, j) in the grid. They are
G—1,/),G j+D,G+1,j)and (i, j —1). We will find the
differences between the colours assigned to (i, j) and each of
its neighbours. The least difference will be equal to ;.

There are two cases to consider: (1) (i 4+ j) is even, and
(2) (i + j) is odd. Note that (i 4 j) value for alternate points
in both X and Y directions will be of the same parity. If we
consider a point for which (i + j) is odd, (i 4+ j) for all its
neighbours will be even and vice versa. It follows that we
need to consider only one case, as considering the other case
will yield the same expressions for the differences.

Consider a point (i, j) and suppose (i + j) is odd. Let the
colour assigned to (i, j) be (i, j). The table in figure 17
shows the colours assigned to the neighbours of (i, j).

Clearly, from the table in figure 17, the least difference
between the colours assigned to neighbouring points is k> —
k — 1. Hence, §; =k2—k—1.

From the formula for (i, j), it can be easily seen that
given any arbitrary point (7, j) in the grid, the colour assigned
to (i, j) can be computed in constant time. O

5. Upper bound on §;

The previous subsections presented colouring schemes for
odd reuse distances where &1, the channel separation con-
straint, has a value of k%, where 0 = 2k + 1. Lemma 7
provides an upper bound on 4.

Lemma 7. ljor allo =2k+ 1,k = {1,2,...}, for any op-
timal L(81, 1,— colouring for G(Aj) (G(Z3), respectively)
51 < k? + k.
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Proof. Suppose C is an optimal L (41, L,_z) colouring for
G(A»). Since there are 3k? + 3k + 1 vertices in a tile of
G(A»), C assigns each number in {0, ..., 32 4+ 3k} to some
vertex in G(Ay). Let §; = § be the separation between the
colours assigned by C to any two adjacent vertices.

Consider the vertex v assigned the colour § — 1. Each of its
six neighbours must be assigned a colour that is at least 26 — 1.
Since (1) the neighbours of v form a cycle of length 6, and (2)
each adjacent pair of vertices in the cycle must be assigned
colours differing by at least &, it follows that at least three of
these vertices must each be assigned a colour that is at least
386 — 1. Thus, at least one neighbour of v must be assigned a
colour that is at least 386 + 1. Then,

38 +1<3k>+3k = §<k>+k.

A similar argument can be used to show that for an optimal
L(81, 15_2) colouring of G(Z?), § < k? + k. O

If o = 2k is even, the size of the tile in G(A,) and in G(Z?)
is 3k% and 2k2, respectively. Then, an argument similar to the
one in the proof of lemma 7 can be used to show that

Lemma S.ﬁFor all 0 = 2k, k = {1,2,...}, for any opti-
mal L(81, 1,_2) colouring for G(Az) (G(Z?), respectively)
51 < kz.

Based on experimental verification by means of an exhaus-
tive search for all values of k < 4, we conjecture that:

Conjecture 1. For all o, for any optimal L(§1, Ia_z)-col-
ouring for G(A») (G(Z?), respectively) 8; < (lo/2])%.

The conjecture implies a tighter upper bound, for odd o,
than the one presented in lemma 7 above. Note that, for
odd o, our assignments presented in sections 4.1 and 4.2 do
realise this value for ;.

6. Conclusions and open problems

We characterised optimal channel assignment schemes for
cellular and square grids, and hence showed that any such
scheme must be uniform across the entire grid. More specif-
ically, in an optimal colouring, the colouring of a tile (for a
given o) will be identically repeated in all the tiles through-
out the grid. We also presented optimal L(§1, 15—2) colour-
ing schemes, with a high value for §1, for square grids for all
o > 4 and for cellular grids for the case where reuse distance
is odd, i.e., 0 = 2k + 1, k € {1,2,...}. The previous best
known results have been restricted to §1 < 3k2 /8 [6], in case
of cellular grids and §; < [(0 — 1)/2] [3] in case of square
grids. We prove an upper bound for §; for optimal colourings
of cellular and square grids. In the case of o being odd, we
conjecture that our value of §; is a tight upper bound on §; for
optimal colouring schemes for these grids.

Several interesting open questions arise from the work pre-
sented here. We list a few of them here:
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(1) Find optimal colouring schemes for cellular grids with
high §; values for the case when o is even.

(2) Find and prove the existence of tight upper bounds for
81,812, ... for a general o.
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