
Copula functions for learning multimodal densities
with non-linear dependencies

Ashutosh Tewari, Madhusudana Shashanka, Michael J. Giering
Decision Support and Machine Intelligence

United Technologies Research Center
{tewaria, shahsam, gierinmj}@utrc.utc.com

In this work, we propose a new framework for learning mixture models from continuous data. Gaus-
sian Mixture Models (GMMs) are commonly used for this task and are popular among practitioners
because of their sound statistical foundation and the availability of an efficient learning algorithm
[2]. However, the underlying assumption about the normally distributed mixing components, is of-
ten too rigid for several real life datasets. With the aim of relaxing this assumption, we introduce
a new class of parametric mixture models whose foundation is laid on the theory of Copula func-
tions. Copula functions provide an elegant way of modeling joint densities of random variables by
providing explicit control on the form of univariate marginals [5, 3, 4]. As a result, the overall joint
density can be written as a product of marginal densities with a density function (copula density)
that encodes the dependencies between the random variables.

We formulate a class of density functions called Gaussian Mixture Copula (GMC) functions. A
GMC function is derived from a Gaussian Mixture density. Let, ψ(x1, x2, . . . , xd; Θ) : Rd →
(0,∞), denote a Gaussian mixture density with a finite number of mixing components. We define
the GMC function as shown in equation 1.

cgmc(u1, u2, . . . , ud; Θ) =
ψ(y1, y2, . . . , yd; Θ)∏d

j ψj (yj)
(1)

where, ψj and Ψ−1
j denote the marginal GMM density and the inverse distribution functions re-

spectively, along the jth dimension. yj are the inverse values computed using the corresponding
inverse distribution function i.e. yj = Ψ−1

j (uj),. The input to the GMC function are the marginal
distribution values, uj , which are assumed to be available by an independent process of fitting uni-
variate densities along each dimension. For this purpose, we used an efficient diffusion based non-
parametric density estimation algorithm [1]. The parameter set Θ consists of mixing proportions,
mean vectors, and covariance matrices of all the Gaussians in the model. We refer mixture models
based on GMC function as Gaussian Mixture Copula Models (GMCM).

The parameter of a GMCM can be estimated in the maximum likelihood setting. Given N i.i.d
sample {x(i)}N1 , the logarithm of observed data likelihood can be defined as in equation 2.

`(Θ|{u(i)}N1 ) =

N∑
i=1

log(cgmc(u
(i)
1 , u

(i)
2 ), . . . u

(i)
d ; Θ) (2)

where, u(i)j is the marginal distribution value of the ith sample along the jth dimension. To obtain the
parameter set Θ, which maximizes this log likelihood function, we solve a nonlinear optimization
problem with linear inequality constraints. The constraints are mainly due to the positive definite-
ness condition that the covariance matrices need to satisfy. Owing to the non-convex nature of the
problem only locally optimal solutions can be guaranteed.

Figure 1(a) shows the scatter plot (with 5000 points) of a bivariate dataset with two distinct non-
elliptical modes. For comparison, we fit both a GMCM and a GMM to this dataset and the resulting
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Figure 1: (a) Scatter plot of bivariate data with two non-Gaussian modes. (b) Contours of the best fit GMCM
density on the bivariate data. The logarithm of observed data likelihood was −13768.5. (c) Scatter plot of
the data points sampled from the best fit GMCM density. Notice the resemblance between the sampled and
empirical distribution of points.

Figure 2: (a) Scatter plot of the same bivariate data as shown in figure 1. (b) Contours of the best fit GMM
density on the bivariate data. The observed data log-likelihood was much lower (−16524.6) than the best fit
GMCM. (c) Scatter plot of the data points sampled from the best fit GMM density. The distribution of sampled
data looks quite different from the actual data.

contours are overlayed on the scatter plots in figures 1(b) and 2(b), respectively. There is a clear
visual evidence that the GMCM offered a better fit to the dataset as compared to the GMM. Another
way to compare the two models is to generate samples from them and compare the distribution
of sampled points with the empirical distribution. Again, the GMCM turned out to be a better
generative model, as the samples generated by it (figure 1(c)) resembled the actual data more closely
than the samples from GMM ( figure 2(c)).

In conclusion, the copula functions have been used extensively in finance, but remained largely
unexplored in the field machine learning. In this work, we leverage the strength of copula functions
to learn flexible mixture models from multi-modal continuous data.
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