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Abstract. In this paper, we study the problem of channel assignment
for wireless networks modelled as d-dimensional grids. In particular, for
d-dimensional square grids, we present optimal assignments that achieve
a channel separation of 2 for adjacent stations where the reuse distance
is 3 or 4. We also introduce the notion of a colouring schema for d-
dimensional square grids, and present an algorithm that assigns colours
to the vertices of the grid satisfying the schema constraints.

1 Introduction

The enormous growth of wireless networks has made the efficient use of the
scarce radio spectrum important. A “Frequency Assignment Problem” (FAP)
models the task of assigning frequencies (channels) from a radio spectrum to
a set of transmitters and receivers, satisfying certain constraints [8]. The main
difficulty in an efficient use of the radio spectrum is the interference caused
by unconstrained simultaneous transmissions. Interferences can be eliminated
(or at least reduced) by means of suitable channel assignment techniques, which
partition the given radio spectrum into a set of disjoint channels that can be used
simultaneously by the stations while maintaining acceptable radio signals. Since
radio signals get attenuated over distance, two stations in a network can use the
same channel without interferences provided the stations are spaced sufficiently
apart. Stations that use the same channel are called co-channel stations. The
minimum distance at which a channel can be reused with no interferences is
called the co-channel reuse distance (or simply reuse distance) and is denoted
by σ.

In a dense network – a network where there are a large number of transmitters
and receivers in a small area – interference is more likely. Thus, reuse distance
needs to be high in such networks. Moreover, channels assigned to nearby stations
must be separated in value by at least a gap which is inversely proportional to the
distance between the two stations. A minimum channel separation δi is required
between channels assigned to stations at distance i, with i < σ, such that δi

decreases when i increases [7]. The purpose of channel assignment algorithms is
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to assign channels to transmitters in such a way that (1) the co-channel reuse
distance and the channel separation constraints are satisfied, and (2) the span of
the assignment, defined to be the difference between the highest and the lowest
channels assigned, is as small as possible [2].

In this paper, we investigate the channel assignment problem, described infor-
mally above, for networks that can be modelled as grids in d dimensions, d ≥ 3.
In Section 3 we define the infinite d-dimensional square and cellular grids, and
show that a solution for the channel assignment problem for the d-dimensional
square (cellular) grid places an upper bound on solutions for the problem for
a suitable d′-dimensional cellular (square) grid. These results partly motivate
our study of the channel assignment problem in higher dimensional grids. An-
other motivation is that when the networks of several service providers overlap
geographically, they must use different channels for their clients. The overall
network can then be modelled in a suitably higher dimension.

The main focus of the paper is a study of the problem for networks arranged
as d-dimensional square grids. We consider the restricted problem requiring a
channel separation of 1 for all but adjacent stations, and a larger (than 1) sep-
aration for adjacent stations. In Section 4, we present optimal assignments for
d-dimensional square grids for σ = 3, 4 with a channel separation constraint
of 2 for adjacent stations. Finally, in Section 4.5, we introduce the notion of a
colouring schema for d-dimensional square grids and present an algorithm that
assigns colours to the vertices of the grid satisfying the schema constraints.

2 Preliminaries

Formally, the channel assignment problem with separation (CAPS) can be mod-
elled as an appropriate colouring problem on an undirected graph G = (V ,E)
representing the network topology, whose vertices in V correspond to stations,
and edges in E correspond to pairs of stations that can hear each other’s trans-
mission [2]. For a graph G, we will denote the distance between any two vertices
in the graph, i.e., the number of edges in a shortest path between the two ver-
tices, by dG(·, ·). (When the context is clear, we will denote the distance as
simply d(·, ·).) CAPS is then defined as:

CAPS (G, σ, δ)
Given an undirected graph G, an integer σ > 1, and a vector of positive
integers δ = (δ1, δ2, . . . , δσ−1), find an integer g > 0 so that there is
a function f : V → {0, . . . , g}, such that for all u, v ∈ G, for each i,
1 ≤ i ≤ σ − 1, if d(u, v) = i, then |f(u) − f(v)| ≥ δi.

This assignment is referred to as a g-L(δ1, δ2, . . . , δσ−1) colouring of the graph
G [6], and CAPS (G, σ, δ) is sometimes referred to as the L(δ) colouring prob-
lem for G. Note that a g-L(δ1, δ2, . . . , δσ−1) uses only the (g + 1) colours in
the set {0, . . . , g}, but does not necessarily use all the (g + 1) colours. A g-
L(δ1, δ2, . . . , δσ−1) colouring of G is optimal iff g is the smallest number witness-
ing a solution for CAPS (G, σ, δ).
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Finding the optimal colouring for general graphs has been shown to be NP -
complete. The problem remains NP -complete even if the input graphs are re-
stricted to planar graphs, bipartite graphs, chordal graphs, and split graphs [4].
Most of the work on this problem has dealt with specific graphs such as grids and
rings, for small reuse distance (σ) values, and for small channel separation (δi)
values, e.g., optimal L(1, 1) colourings for rings and bidimensional grids [1], op-
timal L(2, 1) and L(2, 1, 1) colourings for hexagonal, bidimensional, and cellular
grids [2], etc. Recently, Bertossi et al [3] exhibited optimal L(δ1, 1, . . . , 1) colour-
ings, for δ1 ≤ �σ/2�, for bidimensional grids and rings. (See [3] for a succinct
literature survey of this problem.) Below, we refer to L(·, 1, . . . , 1) colourings by
L(·,1k) colourings.

As pointed out in [2], a lower bound for the L(1,1k) colouring problem is
also a lower bound for the L(δ,1k), δ > 1. Given an instance of CAPS, consider
the augmented graph obtained from G by adding edges between all those pairs
of vertices that are at a distance of at most σ−1. Clearly, then, the size (number
of vertices) of any clique in this augmented graph places a lower bound on an
L(1,1σ−1) colouring for G; the best such lower bound is given by the size of a
maximum clique in the augmented graph.

In each graph, G, for each σ, we identify a canonical sub-graph, T (G, σ), of
the graph so that the vertices of T (G, σ) induce a clique in the augmented graph
of the graph. We will refer to T (G, σ) as a tile. When the context is clear, we
will refer to the size of T (G, σ) simply as c(σ).

Most (but not all) of the assignment schemes described in this paper follow
the pattern: for a given graph G, and for a given σ, (1) identify T (G, σ), (2)
find the number of vertices in T (G, σ), and hence a lower bound for the given
assignment problem, (3) describe a colouring scheme to colour all the vertices of
T (G, σ), (4) demonstrate a tiling of the entire graph made up of T (G, σ) to show
that the colouring scheme described colours the entire graph, and (5) show that
the colouring scheme satisfies the given reuse distance and channel separation
constraints.

3 Channel Assignments in Higher Dimensional Grids

In this section we relate L(δ1, δ2, . . . , δσ−1) colourings for d-dimensional cellular
and square grids.

For any d-dimensional lattice, L, the minimal distance in the lattice is de-
noted by µ(L). The infinite graph, denoted G(L), corresponding to the lattice L
consists of the set of lattice points as vertices; each pair of lattice points that are
at a distance µ(L) constitute the edges of G(L). Henceforth, we will not make
a distinction between the lattice points in L and the corresponding vertices in
G(L). For any lattice L, for any two points u and v in L, dG(L)(·, ·) will denote
the distance between vertices u and v in G(L).

The lattice Zd is the set of ordered d-tuples of integers, and Ad is the hy-
perplane that is a subset of Zd+1, and is characterised as the set of points in
Zd+1 such that the coordinates of each point add up to zero. µ(Zd) = 1, and the
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minimal length vectors in Zd are the unit vectors in each dimension. For each
d > 0, for each i, j, 0 ≤ i, j ≤ d, i �= j, define λd

ij = (x0, . . . , xd) where xi = 1,
xj = −1, and for each k, 0 ≤ k ≤ d, k �= i, j, xk = 0. Then, µ(Ad) =

√
2, and the

set of minimal length vectors in Ad is {λd
ij | i, j, 0 ≤ i, j ≤ d, i �= j}. (See [5,9]

for more on these lattices.)
The infinite d-dimensional square grid is, then, G(Zd), and the infinite d-

dimensional cellular grid is G(Ad).

Theorem 1 For all d ≥ 2, if there is a g-L(δ1, δ2, . . . , δσ−1) colouring for Zd,
then there is a g-L(γ1, γ2, . . . , γ� σ

2 �−1) colouring for Ad−1 where, for each i, 1 ≤
i ≤ 	σ

2 
 − 1, γi = δ2i.

Proof. Consider a point x = (x0, . . . , xd−1) that is in the intersection of Zd and
Ad−1. Then, dZd(x, 0) = 2 · dAd−1(x, 0), thus giving us the theorem. ��
Theorem 2 For all n ≥ 2, if there is a g-L(δ1, δ2, . . . , δσ−1) colouring for Ad,
then there is a g-L(δ1, δ2, . . . , δσ−1) colouring for Z� d+1

2 �.

Proof. Consider the subset of minimal length vectors in Ad given by {λd
i(d−i) |

0 ≤ i <
⌊

d+1
2

⌋}. Clearly, this subset consists of �d+1
2 � mutually orthogonal

vectors, and hence is a basis for Z� d+1
2 �. Thus, the infinite graph for G(Z� d+1

2 �)
is a subgraph of G(Ad), and hence the result. ��

4 Colourings for G(Zd)

As mentioned in Section (1), we first identify the canonical sub-graph
T (G(Zd), σ), and then find lower bounds on the colourings of G(Zd). We then
present optimal colouring schemes for G(Zd), for σ = 3, 4, with a separation con-
straint of 2 for adjacent vertices. We introduce the notion of a colouring schema
for G(Zd), and also prove that the colouring schemes presented have running
times of O(d).

4.1 Lower Bound

The lower bound on the colouring of G(Zd) is the number of vertices in
T (G(Zd), σ), denoted by c(σ). Henceforth, we will refer to this number by n(σ, d).
Note that n(σ, 1) = σ. It can be proved that

n(σ, d) = n(σ, d − 1) + 2
� σ

2 �∑

i=1

n(σ − 2i, d − 1).

4.2 Colouring Strategy

Before we present the actual colouring schemes, we present an intuitive discussion
of the strategy that we will use to colour G(Zd).

We will use the notation (x0, . . . , xi, . . . , xd−1) to denote the vertex in G(Zd).
The strategy used to colour G(Zd) is to identify a base-segment on a baseline. The
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baseline is the set of vertices (x0, 0, . . . , 0). The base-segment is the set of vertices
(x0, 0, . . . , 0) with 0 ≤ x0 ≤ B(σ, d), where B(σ, d) is the number of colours used
to colour G(Zd), with a reuse distance of σ. Note that B(σ, d) ≥ n(σ, d), as
n(σ, d) is the lower bound on the colouring. This base-segment is translated to
fill up G(Zd). A translation of the base-segment into the ith dimension is an
increase in x0, and an increment of 1 in the ith dimension. A translation, in
other words is to repeat the colouring at some distance. The increase in x0 is
given by the translation function ti, where 1 ≤ i ≤ d − 1.

We thus have a function f that colours vertices on the baseline, and a function
C that colours vertices of G(Zd). To prove that our colouring schema work, we
will make use of a process called dimensional collapse, which is the inverse of the
translation process described above. It is the strategy of reducing the colours
assigned to arbitrary vertices in G(Zd) to colours assigned to vertices on the
baseline. We describe the process here.

Consider two vertices P = (x0, x1, . . . , xd−1) and Q = (x′
0, x

′
1, . . . , x

′
d−1) in

G(Zd), where x′
i − xi = ki, 0 ≤ i ≤ d − 1. Let ti be the translation function

employed by a colouring scheme C for G(Zd). The colours assigned to P and Q
will be:

C(P ) = C(x0, x1, . . . , xd−1) = C(x0 −
d−1∑

i=1

xi · ti, 0, . . . , 0), and

C(Q) = C(x′
0 −

d−1∑

i=1

x′
i · ti, 0, . . . , 0).

This means the colours assigned to P and Q are the same as the colours assigned
to vertices u = (x0 −∑d−1

i=1 xi · ti, 0, . . . , 0) and v = (x′
0 −∑d−1

i=1 x′
i · ti, 0, . . . , 0)

on the baseline. We call u and v the collapse points corresponding to P and
Q. Their collapse positions are CP (P ) and CP (Q) respectively. We define the
collapse distance as the distance between u and v. We denote it by CD(P, Q).

CD(P, Q) = d(u, v) = |k0 −
d−1∑

i=1

ki · ti|

4.3 Optimal Colouring for σ = 3

Consider the star graph S∆ which consists of a center vertex c with degree ∆,
and ∆ ray vertices of degree 1. We will use the following from [2].

Lemma 1. [2] Let the center c of S∆ be already coloured. Then, the largest
colour required for a g-L(2, 1)-colouring of S∆ by the colouring function f is at
least:

g =
{

∆ + 1, f(c) = 0 or f(c) = ∆ + 1,
∆ + 2, 0 < f(c) < ∆ + 1.

��
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Every induced subgraph in G(Zd), with the distance between the vertices
d(u, v) ≤ σ − 1 is a star graph with a center vertex of degree 2d and 2d ray
vertices, each of degree 1, and hence we have:

Lemma 2. If there is a g-L(2, 1) colouring of G(Zd), then g ≥ 2d + 2. ��
Lemma (2) shows that n(σ, d) ≥ 2d + 3. We provide a colouring scheme that
uses B(σ, d) = 2d + 3 colours. The base-segment is coloured using the function:

f(x0) =
{

2d − 2x0 + 1, x0 mod (2d + 3) ≤ d,
4d − 2x0 + 4, d + 1 ≤ x0 mod (2d + 3) ≤ 2d + 2.

(1)

We define in Equation (2) the colouring scheme C3, and later prove that it
optimally colours G(Zd):

C3(x0, x1, . . . , xi, 0, . . . , 0) = C3(x0 − (i + 1)xi, x1, . . . , xi−1, 0, . . . , 0), 1 ≤ i < d,

C3(x0, 0, . . . , 0) = f(x0). (2)

We make the following observations about the colours assigned to the baseline:

Lemma 3. For colouring the baseline,

1. The set of 2d + 3 colours used by the function f defined in Equation (1) is
{0, 1, . . . , 2d + 2}.

2. Vertices are assigned consecutive colours iff they are ((d + 1) mod (2d + 3))
or ((d + 2) mod (2d + 3)) apart.

3. For distinct vertices u and v on the baseline, d(u, v) �= 2d + 3 =⇒ f(u) �=
f(v). ��

Theorem 3 C3 is an optimal L(2, 1) colouring of G(Zd).

Proof. From Lemma (3.1), the colouring scheme C3 uses exactly 2d + 3 colours,
with the largest colour being 2d+2. From Lemma (2), this scheme is optimal if it
works. To prove that C3 works, we have to prove that it satisfies the co-channel
reuse and the channel separation constraints.

Adherence to the co-channel reuse constraint: Suppose two distinct ver-
tices P = (x0, x1, . . . , xd−1) and Q = (y0, y1, . . . , yd−1) in G(Zd) are assigned the
same colour. Then, the co-channel reuse constraint is satisfied if we prove that
d(P, Q) ≥ 3. Let us assume the contrary, i.e. d(P, Q) ≤ 2.
Case 1: P and Q differ in x0.

When P and Q differ in x0, we write P and Q as follows:

P = (x0, x1, . . . , xa, . . . , xd−1), and Q = (x′
0, x1, . . . , x

′
a, . . . , xd−1),

where 1 ≤ a ≤ d − 1, x′
0 − x0 = k0, and x′

a − xa = ka, 1 ≤ |k0| + |ka| ≤
2, |k0| > 0.
Performing the dimensional collapse on P and Q, we get:
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CP (P ) = (x0 − dxd−1 − · · · − (a + 1)xa − · · · − 2x1, 0, . . . , 0),
CP (Q) = (x′

0 − dxd−1 − · · · − (a + 1)x′
a − · · · − 2x1, 0, . . . , 0)

CD(P, Q) = |k0 − (a + 1)ka|

Since the maximum value of a is d−1, we have: 0 < |k0 − (a+1)ka| ≤ d+1.
This means that there are two vertices u and v on the baseline such that
C3(u) = C3(P ) and C3(v) = C3(Q), and 0 < d(u, v) ≤ d + 1. From Lemma
(3.3), C3(u) �= C3(v). Therefore, C3(P ) �= C3(Q), giving us a contradiction.

Case 2: P and Q do not differ in x0.
In this case, we write P and Q as follows:

P = (x0, x1, . . . , xa, . . . , xb, . . . , xd−1), and (3)
Q = (x0, x1, . . . , x

′
a, . . . , x′

b, . . . , xd−1), where
1 ≤ a ≤ d − 1 and 1 ≤ b ≤ d − 1, (4)
x′

a − xa = ka and x′
b − xb = kb, 1 ≤ |ka| + |kb| ≤ 2. (5)

Performing the dimensional collapse on P and Q, we get:

CD(P, Q) = | − (a + 1)ka − (b + 1)kb|. (6)

From Equations (4) and (5), and from the fact that a �= b, we have: 0 <
CD(P, Q) ≤ 2d. Therefore we have 0 < d(u, v) ≤ 2d. From Lemma (3.3),
C3(u) �= C3(v). Therefore, C3(P ) �= C3(Q), giving us a contradiction.

The above two cases thus prove that d(P, Q) ≥ 3, thereby satisfying the co-
channel reuse constraint.

Adherence to the channel separation constraint: To prove the channel
separation constraint, we use Lemma (3.2). If P and Q differ in x0, the argument
in Case 1 above applies; otherwise the argument in Case 2 above applies. In either
case, P and Q cannot have consecutive colours. ��

4.4 Optimal Colouring for σ = 4

The lower bound for L(2, 1, 1) colouring is n(4, d) = 4d. Hence, B(4, d) ≥ 4d.
We use the following Lemma, proved in [2], about the span of an L(δ1, 1, . . . , 1)
colouring. For the graph G(V, E), [2] also defines λ(G) as the largest colour used
in an optimal colouring scheme.

Lemma 4. [2] Consider the L(δ1, 1, . . . , 1)-colouring problem, with δ1 ≥ 2, on
a graph G = (V, E) such that d(u, v) < σ for every pair of vertices u and v in
V . Then λ(G) = |V | − 1 if and only if G has a Hamiltonian path. ��
In [2], Lemma (4) is used to prove the existence of a hole in L(2, 1, 1) colouring
of G(Z2). Lemma (5) extends the proof to G(Zd).

Lemma 5. If there is a g-L(2, 1, 1) colouring of G(Zd), then g ≥ 4d.
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Fig. 1. A plane in G(Zd), (a) Induced subgraph M in G(Z3), and (b) Dummy edges in
M

Proof. Consider the plane {(x0, x1, k2, k3, . . . , kd−1)} in G(Zd) where the first
two coordinates can vary and ki’s are fixed constants. Such a plane is shown in
Figure 1. For any vertex x in this plane, xi

1 and xi
0 denote vertices above the

plane of the paper and xi
2 and xi

3 denote vertices below the plane of the paper.
The subscripts 1 and 0 denote distances of 1 and 2 above the plane of the paper
respectively. Similarly, the subscripts 2 and 3 denote distances of 1 and 2 below
the plane of the paper respectively. The superscript i denotes the dimension
of the vertex, where (3 ≤ i ≤ d). Consider the set of vertices which make up
the induced subgraph T (G(Zd), σ) denoted by M for notational convenience
(illustrated in Figure 1a for three dimensions) in G(Zd) with distance between
any two vertices less than the reuse distance 4:

Suv = {u, t, w, v, p, z, s, y, ti1, t
i
2, w

i
1, w

i
2}, and

S
′
pb = {p, t, s, b, , u, a, w, y, ti1, t

i
2, s

i
1, s

i
2}

The points {a, b, si
1, s

i
2} are adjacent to s. Consider the set of vertices in S

′
pb.

Once Suv has been assigned to all different colours, the vertices {a, b, si
1, s

i
2}

of S
′
pb must be assigned the colours assigned to the vertices {z, v, wi

1, w
i
2} if

only 4d colours {0, 1, . . . , 4d − 1} are to be used. Due to the channel separation
constraint, colours assigned to {a, b, si

1, s
i
2} must be at least two apart from the

colour assigned to vertex s. This is equivalent to adding dummy edges connecting
s to {z, v, wi

1, w
i
2} in M induced by Suv. Figure 1b shows these dummy edges in

M in G(Z3). Repeating this argument for vertices y, z and p we get the dummy
edges connecting y to {p, u, ti1, t

i
2}, z to {u, s, ti1, t

i
2} and p to {y, v, wi

1, w
i
2} in

Suv. These edges are not shown in the Figure 1b to avoid cluttering.
Four vertices, p, t, w and z, are common between the sets Suv and She, and

their colours are fixed. The remaining vertices {h, g, f, e, pi
1, p

i
2, z

i
1, z

i
2} of She

should be assigned the colours assigned to {u, s, y, v, ti1, t
i
2, w

i
1, w

i
2} in Suv. We

are interested in the vertices u and v in Suv. We want to prove that a colouring
of G(Zd) satisfying all constraints implies a dummy edge uv in Suv. For this, we
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will fix the colour of v (denoted by C(v)) in She and consider all vertices where
colour of u (denoted by C(u)) can reoccur and prove that we can always find
a set Su′ v′ in which colours of u and v are assigned to adjacent vertices. Note
that due to the co-channel reuse constraint, C(v) can reoccur at h, g, pi

1 or pi
2 in

She and for each of these positions of v, C(u) can reoccur at f, e, zi
1 or zi

2 in She.
Note that for any recurrence of C(v), if C(u) reoccurs at e then C(u) and C(v)
are assigned to adjacent vertices e and v espectively. This implies a dummy edge
between u and v in Suv. Consider the following cases for each recurrence of C(v)
when C(u) does not reoccur at e.

Case 1: C(v) reoccurs at h in She.
Here, C(u) and C(v) are assigned to adjacent vertices u and h respectively.
This implies a dummy edge between u and v in Suv.

1
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S 2
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a d
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Fig. 2. New nomenclature for vertices in Figure 1, and M in G(Z3).

Case 2: C(v) reoccurs at g, pi
1 or pi

2 in She.
To treat this case conveniently, we introduce a new nomenclature for the
vertices in the plane. Figure 2 shows the new nomenclature where the vertices
a, d, a2

2 and d2
2 correspond to vertices h, e, u and v respectively. As before,

the superscripts denote the dimensions, with i = 2 for vertices in the plane.
This case can be broken down into the following two cases.
Case 2a: C(v) reoccurs at bi

1 and C(u) reoccurs at ci
1.

Without loss of generality, consider the case when i = 2. Here, C(u)
and C(v) are assigned to adjacent vertices b2

1 and c2
1 respectively. This

implies a dummy edge between u and v in Suv.
Case 2b: C(v) reoccurs at bi

1 and C(u) reoccurs at cj
1, where i �= j and

2 ≤ i, j ≤ d.
Without loss of generality, let C(v) reoccur at b2

1. Consider the set Sa2
1d2

1
.
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In this set, let b2
1 = x for convenience. Due to co-channel reuse constraint,

C(u) at ci
1 can reoccur in Sa2

1d2
1

at one of b2
0, a

2
1, x

i
1 or xi

2 all of which are
adjacent to b2

1 coloured with C(v).

The above two cases show that no matter where C(u) and C(v) reoccur in She

we can always find a set Su′v′ in which C(u) and C(v) are assigned to adjacent
vertices. Hence we have a dummy edge connecting u and v in Suv as shown in
Figure 1b.

Finally, let us build M , the complement of M . Figure 2 shows M in G(Z3) and
Figure 1a shows M in G(Z3). Since M consists of two connected components, M
cannot contain a Hamiltonian path. Hence by Lemma (4), there is no g-L(2, 1, 1)
colouring for G(Zd) with g = 4d − 1. ��

We shall use the previous strategy of colouring the base-segment and trans-
lating it to fill up G(Zd). Here, for the ith dimension, ti = 4i − 1 and The
base-segment is the set of vertices (x0, 0, . . . , 0) with 0 ≤ x0 ≤ 4d − 1. The
base-segment is coloured using the function:

f(x0) =






x0 div 4 x0 mod 4 = 0,
d + (x0 div 4) x0 mod 4 = 2,
2d + 1 + (x0 div 4) x0 mod 4 = 3,
3d + 1 + (x0 div 4) x0 mod 4 = 1.

(7)

We now define the colouring scheme C4, and later prove that it optimally colours
G(Zd):

C4(x0, . . . , xi, 0, . . . , 0) = C4(x0 − (4i − 1)xi, . . . , xi−1, 0, . . . , 0), 1 ≤ i < d

C4(x0, 0, . . . , 0) = f(x0 mod 4d). (8)

We make the following observations about the colouring of the baseline:

Lemma 6. For colouring the baseline,

1. The set of 4d colours used by the function f defined in Equation (7) is
{0, 1, . . . , 2d − 1, 2d + 1, . . . , 4d}.

2. The difference in colours assigned to consecutive vertices (vertices differing
in x0 by 1) is at least two.

3. For distinct vertices u and v in the same base-segment, f(u) �= f(v). ��

Lemma 7. On the baseline, the following is true about vertices that are assigned
consecutive colours:

1. If they are assigned the colours 2d + 3 and 2d + 4, then they are 2 apart.
2. If they are not assigned the colours 2d+3 and 2d+4, then they are 4k apart,

where k �= 0, k ∈ I. ��
Theorem 4 asserts the optimality of the colouring scheme C4; the proof for
Theorem 4 is similar to the proof of Theorem 3 above.

Theorem 4 C4 is an optimal L(2, 1, 1) colouring of G(Zd). ��
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4.5 Colouring Schema for Zd

A colouring schema for Zd is a generalized scheme for L(δ1,1σ−2) colourings of
G(Zd) for all d and odd values of σ. We show the existence of such schema and
present a provably-correct algorithm that uses such a colouring schema for Zd,
for colouring G(Zd).

Definition 1 For d ≥ 1, suppose σ > 1, N ≥ n(σ, d) are odd integers, and
T = 〈t1, t2, . . . , td−1〉 is a non-decreasing sequence of (d−1) positive, odd integers.
Then (σ, T, N) is a colouring schema for Zd, denoted Sd, iff
1. for each i, 1 ≤ i < d, σ ≤ ti ≤ N , and
2. for all X = (x0, . . . , xd−1) ∈ Zd, X �= 0,

d−1∑

i=0

|xi| < σ =⇒
(

x0 +
d−1∑

i=1

xi · ti

)

mod N �= 0.

Exhaustive verification proves the following proposition that asserts the ex-
istence of a colouring schema for Z3.
Proposition 1 The triple given by σ = 5, T = 〈5, 19〉, and N = 27 is a colour-
ing schema for Z3. ��

We define in Equation (9) the coloring scheme Cd, based on a colouring
schema for Zd, Sd = (σ, T = 〈t1, . . . , td−1〉, N). For each d, define a function
gd(x, N) as:

gd(x, N) =
{ x

2 , if x is even;
x+N

2 , otherwise.

Cd(x0, 0, . . . , 0) = gd((x0 mod N), N).
Cd(x0, x1, . . . , xi, 0, . . . , 0) = Cd(x0 − xi · ti, x1, . . . , xi−1, 0, . . . , 0). (9)

Using properties of the colouring scheme Cd, it is easily verified that:
Theorem 5 For d ≥ 1, given Sd = (σ, T = 〈t1, . . . , td−1〉, N), a colouring
schema, Cd is an L(δ1,1σ−2) colouring of Zd where δ1 = N−td−1

2 . The span
of this colouring is N . ��

The following is an immediate consequence of Proposition 1 and Theorem 5.

Corollary 1 The colouring schema for Zd given in Proposition 1 above wit-
nesses an L(4, 1, 1, 1) colouring of G(Z3). The span of the colouring is N =
27. ��

We end this section with the following observation about the efficiency of the
above assignment algorithms.
Lemma 8. The running times of the above algorithms for colouring G(Zd) are
O(d).

Proof. Consider the general colouring scheme C that uses the translation func-
tion ti to colour a vertex P = (x0, x1, . . . , xd−1). The colour assigned to P is
given by: C(P ) = C(x0 −∑d−1

i=1 xi · ti, 0, . . . , 0). Clearly, the assignment time is
O(d). ��
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5 Conclusions and Open Problems

We investigated relationships between channel assignments in higher dimensional
square and cellular grids, colorings in higher dimensional square grids and pre-
sented optimal L(2, 1) and L(2, 1, 1) colourings for square grids in all dimensions
d ≥ 1. We also introduce the notion of a colouring schema for the d-dimensional
square grid, and an algorithm that, given the colouring schema, assigns colours
to the grid satisfying the schema constraints. Several interesting open questions
arise from the work presented here. We list a few of them here: (1) Find opti-
mal, or near-optimal, colourings for higher dimensional cellular grids. (2) Find
optimal, or near-optimal, colourings for d-dimensional square grids for reuse dis-
tances larger than 4. (3) Find colouring schema Zd for various values of reuse
distance and dimension.
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