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Abstract

Auditory Scene Analysis refers to the human ability to extract different perceptual
objects from a sound mixture. Replicating this ability in artificial systems has been an
active area of research, related both to how one characterizes acoustic sources and separates
sources from mixtures. The focus of this thesis is to develop models and algorithms that
provide a framework to address these questions. The framework comprises latent variable
models that employ hidden variables to model unobservable quantities. Such models are
appropriate for obtaining representations of data that make hidden structure explicit. This
work shows how one can utilize these ideas for the problem of source separation using
single-channel audio signals.

The proposed framework focuses on learning the time-frequency (TF) structure in a
data-driven manner. TF representations of sounds are modeled by treating the energy in
every TF bin as histogram counts of multiple draws. This formulation allows the extrac-
tion of the characteristic frequency structure of individual sources as latent components
and models the sources as additive combinations of these components. The framework is
then extended to incorporate the idea of sparse coding to overcome an important limitation
of the basic model: an upper bound on the number of extractable components. Sparsity,
imposed in the form of an entropic prior distribution, allows extraction of overcomplete
sets of components that are more expressive and better characterize the sources. The sta-

tistical foundation of the framework makes it amenable to other extensions where known

vi



or hypothesized structure about the data can be easily incorporated by imposing appropri-
ate prior distributions. Theoretical analysis of the proposed methods and algorithms for
parameter inference are presented.

Applications of the models to real-world problems are evaluated and discussed. The
latent components learned from acoustic sources are used in a supervised setting for source
separation and in a semi-supervised setting for denoising. Unlike approaches based on
time-frequency masks that reconstruct partial spectral descriptions of sources by identifying
time-frequency bins in which a source dominates, this approach reconstructs entire spectral
descriptions of all sources. Various experimental results demonstrate the utility of the

proposed framework.
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Chapter 1

Introduction

1.1 Introduction

The study of human perception is a fascinating subject. Much research has been devoted to
understand this phenomenon for different modalities such as vision, audition and olfaction.
The domain of audition - the focus of this thesis, however, did not receive as much attention
as vision until the last few decades. This is captured in a remark by Metzger (1953)

(abridged in English and quoted by Plomp, 2002):

The achievements of the ear are indeed fabulous. While I am writing, my
elder son rattles the fire rake in the stove, the infant babbles contentedly in
his baby carriage, the church clock strikes the hour, a car stops in front of the
house, next door one of the girls is practicing on the piano, at the front door
her mother converses with a messenger, and I can also hear the fine scraping of
the point of the pencil and my hand moving on the paper. In the vibrations of
air striking my ear, all these sounds are superimposed into a single extremely
complex stream of pressure waves. Without doubt the achievements of the ear
are greater than those of the eye. Why do the psychologists, particularly the

Germans, stick so stubbornly to vision research?

The comment about German psychologists aside, this quote highlights the effortlessness
with which the human auditory system accomplishes this feat of separating the input into
distinct auditory objects with the listener barely noticing the process. Cherry, in a classic
study published the same year (Cherry, 1953), christened this process as the Cocktail Party

Effect referring to our ability to follow one speaker in the presence of others.



The Cocktail Party Effect is a very challenging problem when viewed from a computa-
tional perspective. An analogy due to Bregman (1990) illustrates the difficulties involved in
the process. Consider that you are on the edge of a lake and have dug two narrow channels
(a few feet long and a few inches wide, spaced a few feet apart) up from the side of the
lake. If you stretch a handkerchief across either channel, waves reaching the side of the lake
will travel up the channel and cause the handkerchief to go into motion. By looking at the
handkerchief, you should be able to infer information about the activities in the lake such
as the number, positions, directions of travel and other attributes of various objects on the
lake (boats, swimmers, etc.). This seems like an impossible task but is a strict analogy
to the problem faced by the auditory system. The lake represents the air that surrounds
us, the canals represent the ear canals and the handkerchief represents the ear drum. We
barely notice the complexity of hearing but it becomes obvious when presented this way.

The problem has been considered before (Helmholtz, 1863) but since Cherry’s study,
there has been a spurt of interest in understanding the cocktail party effect and replicating
this ability in machines. See (Haykin and Chen, 2005; Bronkhorst, 2000) for reviews of
recent developments in the field. Haykin and Chen (2005) list three fundamental questions

pertaining to the cocktail party phenomenon:
e What is the cocktail party problem?
e How does the brain solve it?
e Is it possible to build a machine capable of solving it in a satisfactory manner?

The research work presented in this thesis addresses the last question. We are interested
in the question of whether it is possible to derive computational algorithms that can solve
the problem.

Let us consider a mathematical formulation of the problem. Let z1(¢) and x2(t) repre-

sent the acoustic signals arriving at the two ears at time instant ¢. Let there be N sources



51(t),...,sn(t) where N > 2. We can write the mixtures z(t)" as
N
we(t) =Y argsi(t—0),  ke{l,2},je{l,...,N} (1.1)
j=1

where parameters ap; and d; are the attenuation coefficients and the time delays asso-
ciated with the path from the jth source to the kth receiver (ear). The human auditory
system analyzes the mixture signals x(t) such that the resulting auditory perceptual ob-
jects often have a one-to-one correspondence with the actual sound sources s;(t) making up
the mixture. Most artificial systems formulate the source separation problem in a similar
way. The problem is to estimate the sources s;(¢) from observed signals z1(t) and za(t).
They can be categorized into two groups — systems that work with multiple microphone
(multi-channel) recordings (e.g., Brandstein and Ward, 2001), and systems that work with
single microphone (single-channel) recordings (e.g., Roweis, 2001). Equation (1.1) repre-
sents the multi-channel case with two microphones. In the case of single-channel mixtures,
the equation can be simplified by subsuming the delays and attenuation coefficients within
the source signals (without loss of generality) and can be written as

N

z(t) =Y s;(t). (1.2)

j=1
The focus of this thesis will be the case of single-channel audio signals, exemplified by the
formulation in the above equation.

The main difficulty in solving the cocktail party problem lies in the fact that the system is
usually under-determined. In other words, there is no one unique way in which source signals
can be reconstructed from the available information. For example, in the single-channel
case one can choose several distinct sets of values for s;(¢) such that the relation (1.2) is
satisfied. There is not enough “information” in the mixture signal to reconstruct the sources
exactly. However, it is possible to estimate or obtain approzimate solutions by utilizing some

information about the problem. For example, if we know that we are trying to separate a

!This is a simple formulation used for illustration. One has to consider the frequency dependency of the
delay term to accurately model the mixing process.



male speaker from a female speaker, we could use the fact that the female speaker usually
has a higher pitch. To get a computer accomplish the separation task, we will have to
let the computer “know” about this information. There are several methods researchers
have used, but most are based on two underlying approaches. The first approach is to
understand how the human auditory system solves this problem and utilize similar rules
and heuristics in the artificial system. The second approach is an engineering approach
where the idea is to utilize probability and signal processing theories to take advantage of
known or hypothesized structure/statistics of the source signals and/or the mixing process
to estimate the sources.

Research on auditory perception focused on how humans solve this puzzle. This cul-
minated with the seminal work of Bregman (1990). Bregman outlines many rules and
heuristics that the auditory system uses to understand and organize sound, or to perform
auditory scene analysis (ASA). Since then, there have been many attempts to build ma-
chines that are capable of aspects of ASA, a discipline known as Computational Auditory
Scene Analysis (CASA; Brown and Cooke, 1994; Rosenthal and Okuno, 1998; Divenyi,
2005). Many attempts have been made to build such systems (e.g., see work by Vercoe and
Cumming, 1988; Duda et al., 1990; Mellinger, 1991; Cooke, 1991; Brown, 1992; Brown and
Cooke, 1994; Ellis, 1991, 1992, 1996; Grossberg et al., 2004; Roman, 2005, among others).
These systems include both monaural (single-channel) and binaural (two-channel) systems.
Most of these CASA attempts can be characterized as descriptions of computational im-
plementations of the views outlined by Bregman. They include substantial knowledge of
the psychophysical characteristics of the human auditory system and the heuristics used by
it. As Smaragdis (2001) points out, this approach has inherent limitations, mainly due to

the difficulty in reconciling subjective and fuzzy concepts used by Bregman such as “sim-

YORN14

ilarity”, “proximity” and “continuity” and the strictly deterministic platform of computer
implementations.
On the other hand, researchers in the statistical signal processing community have ap-

proached a computationally equivalent problem from a different perspective. This problem,



usually termed as Blind Source Separation (BSS; Choi et al., 2005), involves finding the set
of source signals that combine to form the observed mixture of signals in a blind (i.e. un-
supervised) manner. There are two categories — beamforming techniques and Independent
Component Analysis (ICA). Beamforming (Brandstein and Ward, 2001) utilizes informa-
tion about the directions of sources, differences in the level and times of arrival at different
sensors, and other sensor-configuration based information to estimate the sources. ICA
(Hyvarinen, 1999) uses statistical information and assumptions about the nature of source
signals to estimate them. Specifically, it assumes that the source signals are generated by
statistically independent random processes. Both of these approaches, however, require at
least two different mixture signals, making them unsuitable for the single-channel case.
We take a machine learning approach and formulate the problem in a supervised setting.
We assume that one or more of the sources present in the mixture are “known.” In other
words, sample waveforms of the known sources (recorded in the absence of other interfering
acoustic objects) are available for analysis before we tackle the problem of separating the
mixture. The idea is to analyze the available “training data” to extract characteristics
unique to each known source and then utilize the learned information for applications such
as source separation. The following section provides an overview of the contributions of

this thesis.
1.2 Overview

This thesis explores modeling single-channel acoustic signals. The focus is on providing a
probabilistic framework to model the sounds so that one can either extract the underlying
structure and understand a particular class of sounds (e.g. analysis of polyphonic music) or
use these models for applications such as source separation. The proposed work considers
the problem from a strictly computational perspective and does not take into account
how the human auditory system solves the problem. The aim is not simply to build a
system capable of source separation but to provide a computational framework grounded

in theoretical principles with which one can attempt to solve such problems. The models



we present use a time-frequency representation of audio signals. This kind of representation
allows us to view the sound in terms of energy present at every frequency component and
time frame.

There are two main themes in this work. First, the focus is the statistical model
that underlies the computational framework. As mentioned above, sounds rarely occur
in isolation. Even for a given source, the sound at any instant is usually composed of many
different underlying components or building blocks. For example, a guitar chord contains

many notes, which can be thought of as the underlying components. This implies that

e energy in a particular time-frequency bin for a signal has contributions from all

sources/components that combine to compose the signal.

We would like to learn these underlying components or building blocks using the developed
probabilistic framework. We use models that employ latent variables, which allows us to
explicitly express the energy in a time-frequency bin as arising from many components.
The latent variables correspond to the underlying components that are unobservable. We
use statistical techniques to estimate the parameters of the model, and thus “learn” the
components from training data. We present theoretical analysis and provide experimental
results that demonstrate applications.

The second theme of this thesis is to investigate sparse coding. We consider models
in which the aim is to represent observed data as an additive mixture of a set of canon-
ical components. In this context, sparse coding refers to a scheme in which only a small
number of components are required to represent any particular instance of data. In an over-
complete code, there are more components than the dimensionality of the data. A sparse
overcomplete code is one that combines notions of both sparsity and overcompleteness. In
the context of modeling acoustic signals, this concept has significant implications. A given
class of sounds that we want to analyze can have an arbitrary number of building blocks.
However, mathematics constrains us so that the number of components extracted is equal
to or less than the dimensionality of the time-frequency representation (i.e., the number of

frequency bins). Extracting more components will lead to trivial solutions or indetermi-



nacy. But the number of underlying components (ground truth) does not depend on the
representation. A sparse overcomplete code allows us to get around the problem - we can
have a large set of components to explain the entire signal; however, any particular instant
will have contributions from only a few components. The proposed work shows how this
computational principle can be utilized in a probabilistic framework. Again, we present
the theory and show experimental results that demonstrate the efficacy of the proposed
methods.

The thesis is organized as follows. Chapter 2 provides background about modeling
single-channel audio, reviewing time-frequency representations of sound and set the stage
for later chapters. Previous approaches that have been proposed for single-channel source
separation are then reviewed. Chapters 3 and 4 represent the core part of this thesis
research. Chapter 3 presents the latent variable framework, while Chapter 4 extends the
framework to incorporate the concept of sparse coding. We present conclusions and avenues

for future work in Chapter 5.



Chapter 2

Modeling Time-Frequency Structure from Audio

Sound is the vocabulary of nature.

Pierre Schaeffer
2.1 Introduction

This chapter presents background about modeling structure from acoustic signals. Time-
frequency representations of sounds are briefly reviewed and conventions used in the re-

maining chapters are defined.
2.2 Representation

Sound consists of pressure variations propagating through a medium such as air. The
common digital representation of an acoustic signal is the sampled waveform, where each
sample represents the sound pressure level at a particular time instant. Figure 2-1 shows
the time-domain pressure signal of a speech sound.

Real-world sounds are time-varying, and all of their meaning is encoded in these vari-
ations in frequency content over time. A time-domain waveform does not represent the
information present in a sound in an explicit way. We can instead utilize a time-frequency
representation, which explicitly represents the energy in every time-frequency bin. The
time dimension corresponds to a sequence of time-frames (successive fixed-width snippets
of the waveform, possibly windowed and overlapping) representing each frequency dimen-

sion, corresponding to the output of one of a bank of filters. This is consistent with auditory



Amplitude

Time

Figure 2-1: Time representation of a female speech utterance “Don’t ask
me to carry an oily rag like that.”

physiology. The first stage of analyzing sounds in biological systems is to decompose the
signal into multiple frequency bands through an intricate mechano-neural interaction in
the cochlea. As a result of this processing, the initial neural representation of sound is well
approximated as a process that takes an incoming acoustic signal and decomposes it into
an ongoing time-frequency representation.

A useful method to obtain a time-frequency representation is the Short Time Fourier
Transform (STFT), introduced by Gabor (1946). The incoming time signal is multiplied
by a time windowing function that is non-zero for a short period of time. The Fourier
transform of the output of the window is taken as the window slides along time axis. This
results in a two dimensional time-frequency representation of the signal that shows how
frequency content changes with time. Results are often displayed as spectrograms that
show energy (using color or grayscale) as a function of time and frequency. Figure 2.2

shows an example spectrogram of the waveform shown in Figure 2:12. In the presence of

2The STFT of a time-signal produces a complex number at every time-frequency bin. We only consider
the magnitude of the STFT to create a spectrogram. Unless otherwise stated, spectrograms represent
ounly the magnitude of the STFT. Also, all figures display the logarithm of the magnitude spectrogram for
enhanced contrast between regions of high and low energy.
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multiple sounds, energy is combined from all sources at every time-frequency component in
the two-dimensional representation of the sound mixture.

The STF'T is just one of the many ways of obtaining a time-frequency representation.
The STFT can be thought of as a representation of the output of a bank of filters that slices
the spectrum into equal width (in Hz), non-overlapping slices. Instead, one can choose a
different filterbank to obtain the frequency bin indices. Examples include the constant-
Q transform (Brown, 1991) or filter banks based on psychoacoustic measurements such
as the gammatone (Patterson-Holdsworth) (Patterson et al., 1995) and the gamma-chirp
filter banks (Irino and Patterson, 1997). The framework we will propose will be applicable
on any time-frequency representation as long as the entries in all time-frequency bins are
non-negative and represent an “energy-like” quantity that can be approximated to combine
additively in the case of sound mixtures. This thesis only considers the magnitude of the
STFT to generate the time-frequency representation that will be considered. Also, the term
spectral vector will be used to denote a particular analysis frame (corresponding to a time

bin) of such a spectrogram.

Frequency Index

“Time Index

Figure 2-2: Time-frequency representation of the waveform of Figure 2-1.
The figure plots the log-magnitude of the short-time Fourier transform of
the signal.
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2.3 Modeling Time-Frequency Structure

The work proposed in this thesis focuses on learning time-frequency structure in a purely
data-driven fashion from audio data. This section reviews other methods that have been

proposed for audio source separation.

2.3.1 CASA Methods

The field of Computational Auditory Scene Analysis (CASA) aims to build sound separation
systems that are based on known principles of human perception (Brown and Wang, 2005).
Bregman (1990) outlined various rules and heuristics used by the auditory system to perform
auditory scene analysis. Since his seminal work, the field of CASA has emerged with
the goal of building artificial systems that implement the principles he outlined. Most
systems, motivated by psychophysics and physiology to a lesser extent, are binaural systems;
however, monaural systems have also been proposed.

An important concept in CASA is that of a time-frequency mask. Consider the prob-
lem of separating out a target signal from a mixture. The idea is to assign a higher weight
to those time-frequeny regions of the mixture in which the target is dominant (has more
energy) and low weight to the rest of the spectrogram. The mask multiplies the mixture
spectrogram and the time-domain target signal is reconstructed from the weighted time-
frequency representation. Weintraub (1985) was the first to use this approach and many
researchers have adopted it since then (Brown, 1992; Brown and Cooke, 1994; Roweis,
2001). The values of the time-frequency mask can be binary or real-valued. In the case of
a binary mask, one only retains those time-frequency regions of the mixture where the tar-
get is dominant, and discards regions in which the target is weaker than the interference.
Specifically, the binary mask has a value of 1 where the target is dominant and 0 else-
where. The intuition is that the dominant source masks energy of the weaker source in any
particular time-frequency bin, and based on the spectrotemporal sparsity of many natural
signals, a reconstruction based on the time-frequency bins in which the target dominates

is sufficient for relatively accurate reconstruction. The ideal binary mask, a binary mask
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Target

Interference

Mixture

Ideal Binary Mask

Figure 2-3: Illustration of the ideal binary mask. Target is a female
utterance “Don’t ask me to carry an oily rag like that” and interference is
a male utterance “She had your dark suit and greasy wash water all year.”
In the Ideal Binary Mask panel, black pixels indicate 1 (allow) and white
pixels indicate 0 (discard). The masked mixture is shown which corresponds
to the reconstructed target.
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one would obtain if the individual source signals of the mixture were available a priori, has
been proposed as the computational goal of CASA (Wang, 2005). Figure 2-3 illustrates the
concept of an ideal binary mask.

The aim of CASA systems is to identify these T-F regions in which the desired target
is dominant. The systems utilize various cues, including harmonicity of the sources, funda-
mental frequency (F0) continuity, common onsets/offsets of energy across frequency bands,
smooth transition of energy along time, and so on. Some methods use “mid-level” represen-
tations to explicitly encode information about such cues. For example, Cooke (1991) uses a
“synchrony strand” representation that makes continuity in time-frequency explicit. Brown
and Cooke (1994) extend the approach to create explicit TF “maps” of onset/offset activ-
ity, frequency transition, and periodicity. For monaural systems, the important cue is the
fundamental frequency of sources. Several systems utilize this cue by constructing “correlo-
gram” representations (Weintraub, 1985; Slaney and Lyon, 1990). Unlike these data-driven
systems, approaches have also been proposed that are top-down and more generic in nature
(Ellis, 1996; Godsmark and Brown, 1999). See Brown and Wang (2005) for a review of
CASA approaches for sound separation.

An important assumption in CASA approaches is that the energy of a single utter-
ance tends to be sparsely distributed, the implication being that different sources are
disjoint in their spectro-temporal content (Yilmaz and Rickard, 2004). Indeed, this ap-
proach fails when mixtures are composed of sounds that are not spectro-temporally sparse.
The approach can result in audible distortions when the composite signals overlap in
time/frequency. In a study comparing CASA and ICA approaches, van der Kouwe et al.
(2001) found that CASA performed well only on mixtures that exhibited well defined re-
gions in the TF plane corresponding to the various sound sources. The performance for
speech separation was best in conditions in which the interferer was tonal or locally nar-
rowband. When there was substantial spectral overlap between target and interference,
performance was poor. Despite the limitations, the idea of time-frequency masks and ideal

binary masks continue to be dominant in CASA research.
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2.3.2 Basis Decomposition Methods

We now briefly review a different class of approaches that we call basis decomposition meth-
ods. The main idea is that an observed data vector can be expressed as a linear combination
of a set of “basis components.” We are interested in methods that analyze time-frequency
representations of audio to extract structure that can be used for applications like source
separation in later stages. In other words, we focus on basis decomposition methods that
analyze time-frequency representations as linear combinations of source-dependent compo-
nents3. The intuition is that every source exhibits characteristic structure across frequency
that can be captured by a finite set of components. Mathematically, the model can be

written as

K
Vi :thth, t= {1,...,T}, (21)
k=1

where v; is the ¢-th frame of the observed spectrogram, K is the number of components, wy,
is the k-th component vector and hy; is the gain of the k-th component in the ¢t-th frame.
Writing the spectrogram as F' x T matrix V, basis components as F' X K matrix the W

([wi,...,wg]), and the gains as K x T' matrix H, the above formulation can be written as
V = WH. (2.2)

Consider a simplistic example that illustrates this idea. The bottom-right panel of
Figure 2-4 shows the spectrogram of a sound signal corresponding to two tones coming on
and off intermittently. At various times during the signal, there is either silence, or one
of the two tones is on, or both tones are on simultaneously. And yet, the entire signal
can be represented as a linear combination of just two components, corresponding to the
tones. The proportions with which the components combine indicates the extent to which
they are present in the signal in each time frame. This is illustrated in the left and top

panels of the figure. In this example, the two components have non-overlapping frequency

3Basis decomposition can also refer to source-independent time domain decompositions such as Fourier
and Wavelet bases. The term is used in a restricted sense here. We should also point out that there are
time-domain methods that extract source-dependent components (e.g., Jang and Lee, 2003) for monaural
source separation but they will not be considered here.
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Figure 2-4: Tllustration of Basis Decomposition. The bottom-right panel
represents a mixture of two intermittent tones. The left panel indicates the
two “basis components” corresponding to the frequencies of the two tones and
the top-panel shows their time profiles. Non-negative Matrix Factorization
was used to derive the spectral and temporal profiles (after Smaragdis, 2004).
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content but this need not be true in general. In the context of source separation, the idea is
that one could “learn” these components for every source present in a mixture signal (from
clean training data) and use this information for source separation. If the components
characterize the sources well, the separation quality should be high.

Several methods can be used for estimating the components to be used as bases. The
formulation of equation (2.2) points to matrix factorization methods such as Principal
Component Analysis (PCA) and Independent Component Analysis (ICA)*. The trouble
with such standard methods is that the resulting matrices corresponding to the components
and gains are real valued with both positive and negative entries. Therefore, components
add and can cancel each other to approximate the input. For example, bases components
extracted by PCA, shown in Figure 2-5 contain both positive and negative values, and the
resulting approximation of the input can contain negative entries. However, the entries of

spectrogram represent energies and thus should have only positive entries.

Figure 2-5: Two PCA basis components extracted from the spectrogram
shown in Figure 2-4. Notice that the components have positive and negative
values, which is hard to interpret in the context of spectrograms (energy
cannot be negative). The ordinate represents frequency.

Non-negative Matrix Factorization (NMF; see section 3.3.4) was introduced by Lee and

“ICA uses a different formulation in which each row of the input V corresponds to time samples of the
mixture signal from one sensor, instead of being a frequency index in a TF representation. ICA works
well only when there are more sensors than sources. However, it has been extended for monaural sound
separation recently as Independent Subspace Analysis, (see Casey and Westner, 2000)
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Seung (1999) to explicitly enforce non-negativity constraints on all the entries of factored
matrices. Researchers have since used this method to model acoustic sources and for source
separation with good results (Smaragdis and Brown, 2003; Smaragdis, 2004; Virtanen,
2007). Recently, there has been a lot of interest in this approach and there have been several
studies regarding its applicability in modeling acoustic signals (Virtanen, 2006; O’Grady,
2007). Despite its wide use, a weakness of NMF is the lack of theoretical motivation. Much
of its appeal comes from its empirical success in learning meaningful components (Hoyer,
2004, pp. 1459), but there is no theoretical justification for why it works in separation
(Virtanen, 2006, pp. 28). However, NMF based approaches have been widely used in various
machine learning applications, including audio source separation, and research interest in

this field continues to grow.
2.4 Spectrograms as Histograms - A Generative Model

The framework proposed in this thesis is based on a different approach to modeling spec-
trograms. We follow the basis decomposition approach and wish to learn characteristic
components for acoustic sources that capture distinctive frequency structures. This is sim-
ilar to NMF but it overcomes a significant limitation of NMF - the lack of a statistical
generative model. We hypothesize a statistical model for how each spectral vector is gener-
ated and the framework attempts to characterize the underlying generative random process.
In this section, we describe this generative model and set the stage for the rest of the thesis.

The value of a particular time-frequency bin in a spectrogram represents the amount
of acoustic energy in the signal at the particular time frame and frequency band. We can
thus consider this value as a count — a value which signifies the number of “energy quanta”
observed at that particular bin. Consider the hypothesized process which generates a
spectral vector. It is generated as a result of multiple draws from a random process. A
given draw corresponds to an observation of one “unit energy quantum” at one of the F
frequency bins. The process is repeated multiple times and the number of energy quanta

observed in each bin is noted. This histogram of results corresponds to the observed spectral



18

vector. The total energy of the spectral vector corresponds to the total number of draws

that generated it. Figure 2-6 illustrates the approach.
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Figure 2-6: Illustration of the “spectrogram as a histogram” perspective.
Each spectral vector is thought of as a histogram of multiple draws from an
underlying random process.

In this approach, we can model a mixture spectrogram as the histogram of draws from
multiple random processes, one each for every source present in the mixture. We show that
the perspective allows us to model and reconstruct entire spectrograms for every underlying
source rather than building partial spectral descriptions (as is done in the binary mask
approach).

Before we proceed, we point out the applicability of the framework (to be proposed in
future sections) to time-frequency representations that are explicitly modeled as probability
distributions. For example, Loughlin et al. (1994) present a method to construct a joint
time-frequency distribution to represent acoustic signals. For such representations, the

framework analyzes the given input instead of modeling it as a histogram.
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Chapter 3

Latent Variable Decomposition: A Probabilistic

Framework

Although to penetrate into the intimate mysteries of nature and thence to
learn the true causes of phenomena is not allowed to us, nevertheless it can hap-

pen that a certain fictive hypothesis may suffice for explaining many phenomena.

Leonhard Euler, 1748

3.1 Introduction

This chapter introduces the probabilistic framework that forms the basis of this thesis.
As mentioned previously, spectrograms are modeled as histograms of multiple draws of
frequency bin indices from an underlying random process. This allows one to develop a
framework grounded in sound statistical principles. The core idea is that the random pro-
cess that generates a particular spectral vector is modeled by a set of latent or hidden
distributions that are characteristic of the source. These latent distributions combine in
different proportions to generate different spectral vectors for a given source. The assump-
tion is that these latent distributions capture spectral structure that is characteristic to
the source and not to the individual spectral vectors. With this framework, one can utilize
learned latent distributions from a set of sources for applications such as source separation
and denoising. The fact that the framework is based on a probabilistic foundation allows
us to use statistical techniques for parameter estimation. It also makes the framework more

amenable to principled extensions and improvements, one of which will be considered in
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the next chapter.

The chapter is organized as follows. Section 3.2 presents background about latent vari-
ables and latent class models. Latent variables and the concept of conditional independence,
which underlie the proposed framework, are discussed. The framework is then proposed
in Section 3.3, along with the theory and derivation of inference algorithms. A geometric
interpretation of the model is presented in Section 3.4 that provides insight about the work-
ings of the framework. The theory is presented with reference to generic feature counts. The
framework is general and can be applied to different kinds of data, including images and
word-counts data. Section 3.5 shows how the framework can be used for source separation
and other acoustic processing tasks. The chapter ends with discussion and conclusions in

Section 3.6.
3.2 Background: Latent Variables and Latent Class Models

Latent variables are widely used to understand and explain observed data in the areas of
social and behavioral sciences and psychology. Consider the following sentence, used as
an example by Borsboom et al. (2003): “Einstein would not have been able to come up
with his e = mc? had he not possessed such an extraordinary intelligence.” This sentence
relates observable behavior (Einstein’s writing e = mc?) to an unobservable attribute (his
extraordinary intelligence), and it does so by assigning to the unobservable attribute a causal
role in bringing about Einstein’s behavior. In psychology, constructs like this often play an
important role to scientific theses. Similar situations arise in social science when scientists
wish to understand attitudes of a population of individuals by observing their responses in
a questionnaire. Problems like these can be approached by modeling the observed actions
as manifest variables and the hidden attitudes as latent variables.

One can have a variety of models that employ latent variables. A simple example is as
follows:

r=u+0, (3.1)

where x is the manifest variable, u is the latent variable and & represents measurement
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error. The latent variable models that are of relevance to this work are more complex and

are referred to as Latent Class Models.

3.2.1 Latent Class Models

According to Borsboom et al. (2003), the conceptual framework of latent variable analysis as
discussed in this section can be traced back to the work of Spearman (1904), who developed
factor-analytic models for continuous variables in the context of intelligence testing. The
basic statistical idea of latent variable analysis is simple. If a latent variable underlies a
number of observed variables, then the observed variables conditioned on that latent variable
should be statistically independent. This is called the principle of local independence. The
intuition behind this idea is that the common cause of a phenomenon should factor out
observed correlations. Suppes and Zanotti (1981) call this principle the common cause
criterion. For example, if it was found that barometric pressure and temperature were
both dropping at the same time, one would look for a common dynamical cause within
the theory of meteorology. Similarly, if one found that headaches and fever were positively
correlated, he/she would look for a common cause instead of considering one as a cause
of the other. Following Spearman’s work, this paradigm developed in the 20th century.
Models that assume the principle of local independence and employ discrete variables for
both latent and observed variables are known as latent class models (Green Jr., 1952;
Lazarsfeld and Henry, 1968; Goodman, 1974).

To illustrate the model, consider an example used by Lazarsfeld and Henry (1968). Let
us suppose that a survey was conducted about the readership of two magazines x1 and s,

and 1000 people responded. The results of the survey are shown in Table 3.1.

Read 1 No z1 | Totals
Read x9 260 240 500
No zo 140 360 500
Totals 400 600 1000

Table 3.1: Tllustrative example for latent class models - readership of mag-
azines x1 and x9
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From the table, it is easy to see that there is some association between the readerships
of magazines x1 and x2. A simple indicator is the fact that readers of x; tend to read o
(260) more often than non-readers of z; (240). The magazines have some common appeal
to to readers, though they are quite different in the readership.

Now, suppose that additional data on the 1000 respondents are available that indicate
whether each individual has obtained higher education or not. The data can then be divided

into two groups as shown in Table 3.2.

High-Ed Low-Ed
Read 1 No xz7 | Totals | Read 1 No z; | Totals
Read x9 240 60 300 20 80 100
No x5 160 40 200 80 320 400
Totals 400 100 500 100 400 500

Table 3.2: Readership of x; and x2, given education

In the subgroups corresponding to different levels of education, there is no association
between the readership. For example, among the High-Ed respondents, 4/5 read magazine
x1 irrespective of whether they read zo (240/300 = 4/5 = 160/200). Since there is no
association between z; and z2 when education is considered, one can say that education
explains the observed association between the magazines. The observed relation between
r1 and xo was due to their common appeal to higher educated people.

Now, the same data can be viewed in terms of probabilities by normalizing all the
entries. For example, the probability that a person would read both x1 and x5 is equal to
260/1000 — 0.26. Let us represent the readership of magazines by random variables z; and
x9 which take two possible values 0 and 1. Let a value 1 imply that the person reads the
magazine while a value of 0 implies that he/she does not. Similarly, let us represent the
status of education by a dichotomous random variable z, where a value of 1 implies High-
Ed and a value of 0 implies Low-Ed. Then, tables 3.1 and 3.2 can be written in terms of
probabilities as shown in tables 3.3 and 3.4 respectively. The observed data can be viewed

as histograms of repeated draws from these underlying probability distributions.
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xr1 = 1 xIr1 = 0
x9g =11 P(z1,22) =0.26 P(z1,22) =0.24 | P(z2) =0.5
To = 0 P(wl,wz) =0.14 P(xl,xQ) =0.36 P(.%’Q) =0.5

Table 3.3: Illustrative example for latent class models - probabilities of
random variables 1 and .

Plz=1)=05
z1 =1 1 =0
x2 =1 | P(z1,22]2) =048 P(z1,22]2) =0.12 | P(z2]|2) = 0.6
29 =0 | P(z1,22]2) =0.32 P(z1,22|z) =0.08 | P(z2]|z) =0.4

P(x1]z) =0.8 P(z1]z) =0.2 1
P(z=0)=0.5
r1 =1 1 =0

x2 =1 | P(z1,22]2) =0.04 P(z1,22]2) =0.16 | P(z2]2) =0.2
29 =0 | P(r1,22|2) =0.16 P(x1,x2]z) = 0.64 | P(x2|z) =0.8
P(z1]z) =0.2 P(x1]2) =0.8 1

Table 3.4: Probabilities of random variables x; and x4, given variable z.

Table 3.3 lists both the joint probabilities P(x1,x2) and marginal probabilities P(x1),

P(x2), where the marginals are given by

P(a;l) = P(a:l,xg = 0) +P(1I1,1I2 = 1),

P(x3) = P(x1 = 0,22) + P(x1 = 1, x2).

If we account for the random variable z corresponding to the education attribute that

“explains” the data (as shown in Table 3.4), we also observe the following relation

P(z1,x2|2) = P(z1]2) x P(22]2). (3.2)

The above relation implies that the random variables 1 and x9 are statistically indepen-
dent if they are conditioned on random variable z. This relation enabled us to say that the

concept corresponding to the variable z (education) explained the observed associations.
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The observed joined probability can be written as

P(z1,29) = Y P(2)P(x1]2)P(2]2). (3.3)
z€{0,1}

Equations (3.2) and (3.3), which correspond to the principle of local independence, de-
fine a latent class model. But the underlying variable z which renders the observed variables
independent corresponds to a hidden or latent concept that is not directly observable, unlike
the “education” attribute used in this example. Data about such additional attributes are
rarely available and even when available, are not sufficient to explain the observed associa-
tions. The intuition behind latent class models is to explain the associations by invoking a
hidden variable. In the general case, we can have multiple variables (say K) x1,z9,...,TxK
and each variable, instead of taking two values, could take multiple values. In its general
form, latent class model expresses a K-dimensional distribution as a mixture where each
component of the mixture is a product of one-dimensional marginal distributions. Mathe-

matically, we can write it as

K
P(x) = 3 P(2) [ Plajl2). (3.4)

j=1
where P(x) is a K-dimensional distribution of the random variable x = z1,x9,...,7k.
Mixture components are indexed by the latent variable z and P(x;|z) are one-dimensional
marginal distributions. Given counts of multiple draws from P(x), the aim is to estimate

the parameters of the model P(z) and P(zj|z2), j € {1,2,...,K}.

3.2.2 Latent Class Models as Matrix Decomposition

Consider a latent class model in two variables 1 and x3. Let x1 and x9 be multinomial
variables, where z; can take one out of a set of M values in a given draw and xo can take
one out of a set of N values. A draw can be thought of as rolling dice two with M and
N faces, respectively. Observed data can be represented as a matrix V, where the mn-th

element V,,, represents the number of draws in which z; took a value of m and x5 took
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a value of n. Let P represent the matrix of normalized values of V. In other words, P
represents the underlying distribution P(x), where P,,, = P(x; = m,xz9 = n). Consider a
latent variable z that can take values from the set {1,2,..., K}.

The latent class model expresses the joint distribution of x; and x9 as

P(z1,9) = Y P(2)P(x1]2)P(2]2). (3.5)
ze{l,...,.K}

We can view the above relation from the perspective of linear algebra. Let us represent the

parameters P(z1|z), P(z2|z) and P(z) as entries of matrices W, H and S as follows:

e Wis a M x K matrix, where the entry in m-th row and k-th column corresponds to

the probability P(x1 = m|z = k).

e H is a K x N matrix, where the entry in k-th row and n-th column corresponds to

the probability P(zy = n|z = k).

e Sisa K x K diagonal matrix, where the k-th entry corresponds to the mixture weight

P(z=k).

With this matrix notation, we can write the relation of latent class model as follows:

P(z1,m5) = Y P(2)P(a1]2)P(x2|2)
ze{l,...,K}
K
Pwle — ZWmlezszxQ
z=1
P = WSH. (3.6)

Figure 3-1 illustrates the latent class model computation using a schematic. Thus, using a
latent class model is equivalent to performing a matriz decomposition.
With this background, we are ready to introduce the general framework for latent

variable decomposition.



P(i,2s) | =

P(z22)

Figure 3-1: Illustration of the Latent Class Model computation. It is
equivalent to a matrix decomposition

3.2.3 Probabilistic Latent Component Analysis (PLCA)

Before we present the framework, we first briefly describe Probabilistic Latent Component
Analysis (Smaragdis and Raj, 2007; Smaragdis et al., 2006), which is equivalent to latent
class models.

Consider a magnitude spectrogram V of a given sound snippet. Let the dimensions of
the matrix be F' x T (i.e., there are F' frequency indices and T time frames). As described
in Chapter 2, V can be thought of as a histogram of frequency localized sound atoms. The
entry in each time-frequency bin Vy; describes how much acoustic energy we have at the
particular frequency and time-frame. Let the random variable f represent the frequency
index and t represent the time-frame. PLCA allows us to characterize the joint distribution
P(f,t) as

P(f,t) =) P(2)P(f|2)P(t|2). (3.7)
z

As we showed in equation (3.6) with Latent Class Models, we can write this equation in

matrix form as

P = WSH, (3.8)

where F' x T matrix P represents the two-dimensional distribution P(f,t), W is an F' x K
matrix with the f-th entry of the z-th column representing P(f|z), S is an K x K diagonal
matrix where the z-th diagonal element represents P(z), and H is an K x T matrix with
the ¢-th element of the z-th row representing P(¢|z). Random variables corresponding to

both dimensions are thought of as features and are treated symmetrically. The generative
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process for the model is as follows:

e Choose a value for latent variable z according to the distribution P(z),

e Choose a value for f based on P(f|z) and a value for ¢ based on the distribution

P(t]z).

e Repeat the above two steps V' times, where V = thVft (i.e., the total number of

energy “quanta” observed).

Figure 3-2 shows the graphical model for this generative process.

RO

P(1,0) = 3 P()P(f12)P(l]2)

Figure 3-2: Graphical model for two-dimensional latent class model. Cir-
cles represent variables, a box surrounding them indicates how many times
they should be drawn and arrows indicate statistical dependence. z repre-
sents the hidden variable, f and ¢ are the features drawn in the two dimen-
sions in a given draw, and V is the total number of draws.

The objective of the analysis is to evaluate the underlying time-frequency structure
of the given sound snippet by characterizing the generative distribution. This is done by
estimating the parameters on the right hand side of equation (3.7) from the observed P(f,t).
We can accomplish this by using the Expectation-Maximization algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997; Neal and Hinton, 1998). The algorithm contains
two steps - expectation and maximization - which are alternated in an iterative manner
until convergence. All parameters are initialized to random values before starting the first
iteration. In the expectation step, we estimate the “contribution” of the latent variable z

P(2)P(f|2)P(t|z)

PELD = S peypl Pl

(3.9)
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Figure 3-3: Illustration of PLCA applied on a spectrogram of three pi-
ano notes (bottom right). The top-right panel displays the extracted
time marginals and the bottom-left panel shows the extracted frequency
marginals. The top-left plot shows the mixture weights P(z). Notice that
the frequency marginals describe the spectra of the notes while the time-
marginals describe their energy as a function of time.
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In the maximization step, we re-estimate the marginals and the mixture weights using the

above weighting to obtain a new and more accurate estimate:

S S VRPCILY
PO = S S VPG (3.10)
S, VPGS 1)

> S VAP0
S, Vi P ()
P(t]2) = ST PG (3.12)

P(f]z) (3.11)

Figure 3-3 shows an example where PLCA was applied on an audio sample corresponding
to three piano notes. The latent variable was allowed to take three values and the extracted

frequency components correspond to the spectra of the three notes present in the sample.
3.3 Latent Variable Decomposition: Framework

We have seen in the previous section that Latent Class Models and PLCA are equivalent.
For acoustic data in the form of a F' x T" matrix V, the models decompose the distribution
P(f,t) symmetrically by considering both the f and ¢ dimensions as features. Instead of
a symmetrical decomposition of PLCA, one can have a different decomposition where the

two dimensions treated differently®:

P(f.t) = P(t) Y P(fl2)P(z]t), (3.13)

or

P = WHS (3.14)

in matrix form, where P represents the two-dimensional distribution P(f,¢), Wisan F'x K
matrix with the f-th entry of the z-th column representing P(f|z), H is an K x T matrix
with the z-th entry of the ¢-th column representing P(z|t), and S is an T' x T diagonal

matrix with the ¢-th diagonal element equal to P(t). Figure 3-4 shows the graphical model

’Instead, we can use P(f,t) = P(f) >, P(t|z)P(z|f) (or in matrix form: Ppy7 = SpxrWrxxHrxT,
where subscripts denote matrix sizes and S is a diagonal matrix). This is numerically equivalent to using
equation (3.13) or (3.14) with the input dimensions transposed.



30

for this factorization. Hofmann (2001), motivated by applications in semantic analysis of

text corpora, introduced this model as Probabilistic Latent Semantic Analysis.

O+O—D

P(f,1) = P(t) ) P(f|2)P(=]t)

Figure 3-4: Graphical model for alternative decomposition of the two-
dimensional latent class model. Circles represent variables, a box surround-
ing them indicates how many times they should be drawn and arrows in-
dicate statistical dependence. Each column vector of the data matrix V is
considered a separate data vector. z represents the hidden variable, f is the
feature drawn in a given draw, V4 is the total number of draws for the ¢-th
data vector, and T is the total number of data vectors.

In this section, we present a specific case of the decomposition of the latent class model
as defined in equations (3.13) and (3.14). It was originally proposed by Raj and Smaragdis
(2005) in the context of separating talkers from single-channel acoustic recordings. Each
data vector is considered independently and we model T" one-dimensional distributions P;(f)
instead of the two-dimensional distribution P(f,t). Treating the two dimensions differently
allows the resulting decomposition to be interpreted easily as “components” corresponding
to underlying structure of the data and their “mixture weights.” This model will form the
basic computational framework of this thesis. Henceforth, the terms latent variable model
and latent variable decomposition will refer specifically to this model, unless explicitly stated

otherwise.

3.3.1 Latent Variable Model

Consider a random process characterized by the probability P(f) of drawing a feature
unit f in a given draw. Let the random variable f take values from the set {1,2,..., F}.

Let us assume that P(f) is unknown and what one can observe instead is the result of
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multiple draws from the underlying process. In other words, we observe feature counts, or
the number of times feature f is observed after repeated draws. We can approximate the
generative distribution P(f) by using the normalized set of counts.

Now suppose we also know that P(f) is comprised of K hidden distributions or latent
factors. The observation in a given draw might come from any one of the K distributions.
The distributions are selected according to their relative probabilities, which remain con-
stant across draws in a given experiment. We are allowed to run multiple experiments and
observe feature counts for each experiment. The probabilities of the hidden distributions
vary from experiment to experiment. Qur task is to characterize these hidden distributions.

Let us define P(f|z) as the probability of observing feature f conditioned on a latent
variable z, where z represents the index defining which hidden distribution is being con-
sidered. The probability of picking the z-th distribution in the ¢-th experiment can be

represented by P;(z). We can now formally write the model as

P(f) =) P(fl2)P.(2), (3.15)

where Pi(f) gives the overall probability of observing feature f in the ¢-th experiment.
Here, the multinomial distributions {P(f|z)} can be thought of as basis components that
are characteristic to all experiments. P;(z) are mixture weights that signify the contribution
of P(f|z) towards P,(f). The subscript ¢ indicates that mixture weights change from
experiment to experiment.

The random process generating counts in the t-th experiment can be summarized as

1. Pick a latent variable z with probability P;(z).
2. Pick feature f from the multinomial distribution P(f|z).

3. Repeat the above two steps V' times,

where V is total number of draws in experiment ¢. Figure 3-5 shows the graphical model de-
picting the process. This model is equivalent to using the latent class model (or equivalently

PLCA) on the result of every experiment independently.
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Figure 3-5: Graphical model for the random process underlying the gen-
eration of a data vector. Circles represent variables, the surrounding box
represents repeated draws and the arrow represents dependence. z is the
hidden variable, f is the feature drawn, and V' is the total number of draws.

3.3.2 Parameter Estimation

Let Vj; represent the feature count of feature f in the ¢-th experiment. Given feature
counts Vy;, we wish to estimate parameters P(f|z) and P;(z). Let A represent the set of
parameters, i.e. A = {P(f|z),P:(z)}. We use a maximum likelihood formulation of the
problem. The log-likelihood of observing the obtained f counts across all T' experiments is
given by

P = szft log P(f). (3.16)
t f

The maximum likelihood method estimates parameters such that this log-likelihood is maxi-
mized. The standard procedure for maximum likelihood estimation in latent variable models
is the Expectation Maximization (EM) algorithm. EM alternates two steps: (1) an expec-
tation (E) step where the a posterior: probabilities of the latent variables are computed
based on the current estimates of the parameters, and (2) a maximization (M) step, where
parameters are updated such that the expected complete data log-likelihood® is maximized.

For the E-step, we obtain the a posterior: probability for the latent variable as

Pl f) = ZUDPU ) (3.17)

- XL P()P(fl2)

5The term “complete data log-likelihood” refers to the log-likelihood calculated by considering the like-
lihood of the obtained counts of both observed variable f and the latent variable z. It is given by P(f, z),
where f and Z represent the sets of all observations of f and z in the draws that generated all data vectors.
The expectation is over the distribution P(Z|f;A).
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In the M-step, we maximize the expected complete data log-likelihood. The expected

log-likelihood can be written as
£ = Exzlog P(.2), (3.18)

where f and Z represent the set of all observations of f and z in the draws that generated

all data vectors. The complete data likelihood can be written as

z) = HPt(fja zj) HPt zj) P(fjlzj), (3.19)
gt

where f; and z; are the values of variables f and z in the j-th draw. Hence, we can write

the function £ as (ignoring the constant terms)

L = Ey5p logHPt(fj, 2j)

j)t
= Ezpa Z log P:(fj,25)
j?t
= Y E.nlog Pi(f;, %)

j7t
= ZEzglf A log Pi(z;) —|—ZE (1750 log P(fjlz5)

= ZZPzIfJ log P;(z +ZZPz|fJ log P(f;12) (3.20)

In the above equation, we can change the summation over draws j to a summation over
features f by accounting for how many times f was observed, i.e. the f-th entry in the

observed data vector’. The expected log-likelihood can now be written as

L= ZZvatZPt (2])log Pi(2 +ZZvvftZPt (/) log P(fl2).  (3:21)

We have additional constraints on the parameters P(z) and P(f|z) as they represent
probability distributions, given by >_. P;(2) =1 and >, P(f[2) = 1. In order to take care

of these normalization constraints, the above equation must be augmented by appropriate

"Since observed data is modeled as a histogram, entries should be integers. To account for this, we
weight the data by an unknown scaling factor ~.
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Lagrange multipliers 7+ and p,,
Q:£+ZTt(1—ZPt(z)> +sz<1—ZP(f]z)) (3.22)
t z z f

Maximization of @ with respect to Pi(z) and P(f|z) leads to the following sets of

equations

S AVRRE) + iPu(z) = 0, (3.23)
!
ST AViRP(eIf) + p=P(f]2) = 0. (3.24)

t

After eliminating the Lagrange multipliers, we obtain the M-step re-estimation equations

) — > ViePi(2|f) .
PUR) = S S Vbl Al

2 VrB(Elf)
BRI

~—

The E-step update is given by equation (3.17) and the M-step update is given by equa-
tions (3.25). The parameters P(f|z) and P,(z) are randomly initialized and re-estimated
using the above equations iteratively until a termination condition is met. The EM algo-
rithm guarantees that the above multiplicative updates converge to a local optimum.

Figure 3-6 shows an example application of the latent variable model. The model was
used to analyze handwritten digits from the USPS Handwritten Digits database®. Twenty
five basis components were extracted by analyzing 1000 different instances for every digit.
Each instance of a digit was given by the pixel intensities as a 16 x 16 matrix. We unwrapped
each one as a 256-dimensional vector and represented the set of 1000 vectors as a 256 x 1000
matrix V. The matrix V was used as the input to the algorithm. Figure 3-6 shows the

extracted components for digit “2.”

3.3.3 Latent Variable Model as Matrix Decomposition

We can write the model given by equation (3.15) in matrix form as p; = Why, where

p: is a column vector indicating P;(f), h; is a column vector indicating P;(z), and W is

8from http://www.cs.toronto.edu/~roweis/data.html.
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Mixture Weights

f

Figure 3-6: Latent Variable Model applied on the USPS Handwritten Dig-
its database. Twenty-five basis components were learned from the data set
and basis components extracted for the digit “2” are shown in the left panel.
The basis components are shown in a 5 x 5 tile. They correspond to various
hand-strokes (basis vectors) that could be added to obtain the digit “2.”
The three panels on top-right show the mixture proportions with which the
basis components combine to approximate the input vectors (shown in the

bottom three panels).

1]

Data Vectors
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the F' x K matrix with the (f, z)-th element corresponding to P(f|z). Concatenating all

column vectors p; and h; as matrices P and H respectively, one can write the model as

P = WH. (3.26)

This formulation is similar to matrix decompositions such as PCA, ICA and NMF. We have
additional constraints that the columns of P, W and H, being probability distributions,
should be positive and sum to unity. Thus, the model is equivalent to a matrix decompo-

sition which operates in the probability distribution space and is illustrated in Figure 3-7.

Bi(f) =

Fi(2)

P(f|z)

Figure 3-7: Illustration of the Latent Variable Model computation, which
is equivalent to a matrix decomposition.

Furthermore, we want to clarify how the decomposition P = WH relates to the data
matrix V. Let the matrix V refer to the data in V with all the columns normalized. In
other words, the ¢-th column of V, ¥, is the normalized version of v, the t-th column
of V (the entries of v; sum to unity). Let us refer to the normalized columns v; as data
distributions. We first show that the maximum likelihood estimator for the parameters
P(f|z) and Py(z) attempts to minimize the Kullback-Leibler (KL) distance between the
data distribution v; and the model approximation P;(f).

Maximum likelihood method estimates parameters such that the log-likelihood P, given

by equation (3.16), is maximized. We can rewrite it as

Vi
P=> 0"V =L —logP(f). 3.27
t(f 7t) Vi g Pi(f) (3.27)
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Representing the normalized data Vi, / Zf Vit by Vft, we can write the log-likelihood as

P = E:EZW%EZVﬁbg( )+§:§:Ww§:Vﬁbth

- V. Ve lo ( t_ >+constant term

= — Z(Z Vi) D1 (Ve||pt) + constant term, (3.28)
tf

where

Drr(VelIpe) = Z Vi log (3.29)

is the Kullback-Leibler distance between the data distribution v; and the model approxi-
mation p;. The term (3, V) > Vi log Vi is a constant since it does not depend on
P(f). From equation (3.28), we can see that maximizing the log-likelihood P is equivalent
to minimizing the sum of the KL distances D1 (v¢||p¢), scaled by the total number of
draws >, Vit

In other words, the model attempts to find a matrix decomposition that approximates
the data distributions V as

V~P=WH, (3.30)

where the approximation error is measured by the KL distance. Equivalently, the model

attempts to approximate the data matrix V as
V ~ WHG, (3.31)

where G is a T' x T diagonal matrix with the ¢-th entry equal to Zf Vi Now, we can
write the update equations (3.17) and (3.25) in matrix form. Writing the normalization

steps separately, we have

Hys Vft Wnew

— WI" = new, and,
(WoldH)ft Ik Zf W

Hnew _ Hold Z Hew — HI?tew (3 32)
kt WHold kt Zf Vft ) :

Wnew _ Wold
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where A;; represents the ij-th entry of matrix A.

3.3.4 Relation to Other Models

The latent variable model we presented is closely related to two techniques - Probabilistic
Latent Semantic Analysis, and Non-negative Matrix Factorization. In this subsection, we

briefly comment on how the model relates to these techniques.

Probabilistic Latent Semantic Analysis

Hofmann (2001) introduced Probabilistic Latent Semantic Analysis (PLSA), motivated by
applications in semantic analysis of text corpora. The aim of the method is to identify
contexts of word usage in documents without recourse to a dictionary or a thesaurus. This

is not straightforward because of two kinds of words that occur in languages:
Polysems - words with multiple meanings, and
Synonyms - words with identical or similar meaning.

PLSA is largely influenced by Latent Semantic Analysis (LSA; Deerwester et al., 1990).
The key idea of LSA is to map high-dimensional count vectors to a lower dimensional latent
semantic space. By applying LSA on vector space representations of text documents, where
every document in a corpus is represented by a vector of word-counts (Salton and McGill,
1983), one aims to represent semantic relations between words and/or documents in terms
of their proximity in the semantic space. The technique stems from linear algebra and is
based on a Le-optimal approximation of matrices of word counts based on a Singular Value

Decomposition (SVD). One starts with the standard SVD given by
V =UXY’, (3.33)

where V is the term-document matrix of word counts, U and Y are matrices with or-
thonormal columns, and the diagonal matrix 3 contains the singular values of V. The

LSA approximation of V is computed by thresholding all but the largest K singular values
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in ¥ to zero. One might think of the rows of UX as defining coordinates for documents in
the latent space. The hope is that terms having a common meaning and similar documents
(even if they don’t have terms in common) are roughly mapped to the same direction in
the latent space.

As the name suggests, PLSA provides a probabilistic framework for LSA. Let P(d)
denote the probability that a word occurrence will be observed in a particular document d,
P(w|z) denote the class-conditional probability of word w conditioned on the unobserved
class variable z, and P(z|d) denote a document specific probability distribution over the
latent variable space. PLSA defines a generative model for word/document co-occurrences

by the following scheme:
1. select a document d with probability P(d),
2. pick a latent class z with probability P(z|d), and
3. generate a word w with probability P(w|z).

One can now describe the joint word-document probability distribution as
P(d,w) = P(d) ) P(w|z)P(2|d). (3.34)

This equation is identical to equation (3.13) and corresponds to an alternative decomposi-

tion of the latent class model

P(d,w) =Y P(2)P(d]z)P(w|2).

The PLSA model, thus, is a specific case of the general framework. The latent variable
model introduced in the previous section corresponds to a simplified version of this model
where document probabilities are not explicitly computed. The maximum likelihood esti-
mates of the parameter P(d) is the fraction of all observations that come from the d-th
document. The estimates of P(w|z) and P(z|d) can be shown to be identical to the up-

dates of the latent variable parameters derived in Section 3.3.2, where words w correspond
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to features f and documents d corresponds to experiments indexed by t.

Non-negative Matrix Factorization

Non-negative Matrix Factorization (Paatero and Tapper, 1994; Lee and Seung, 1999) was
introduced as a technique to find non-negative parts-based representation of non-negative
data. Given an F' x T matrix V where each column corresponds to a data vector, NMF
approximates it as a product of non-negative matrices W and H, i.e. V ~ WH, where
W is a F x K matrix and H is a K x T matrix. We use W and H to disambiguate the
NMF decomposition matrices from the notation used in Section 3.3.3. The columns of W
can be thought of as basis components that are optimized for the linear approximation of
V. The non-negativity constraints make the representation purely additive (allowing no
cancellations), in contrast to other linear representations such as Principal Components
Analysis (PCA) and Independent Components Analysis (ICA).

The optimal choice of matrices W and H are defined by those non-negative matrices
that minimize the reconstruction error between V and WH using iterative update rules.
Different error functions have been proposed which lead to different update rules (Lee and
Seung, 1999, 2001). Shown below are multiplicative update rules derived by Lee and Seung

(1999) using an error metric similar to the Kullback-Leibler divergence:

Hy; Hy Vi - W,

W W W = ot d,
e sz (WH) fk Zfok an
, WiV,
Hy Hktz Wf;[];t (3.35)
t

where A;; represents the i-th row and the j-th column of matrix A. If one compares
the above equations to the EM update rules for the latent variable model given by equa-

tions (3.32), it is easy to see that the update rules are identical if one lets

W=W, and H=HG. (3.36)
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3.4 Latent Variable Decomposition - Geometrical Interpretation

The latent variable model as given by equation (3.15) expresses an F-dimensional distri-
bution P;(f) as a mixture of K F-dimensional basis distributions P(f|z). The aim of the
model is to find P(f|z) such that P,(f) best approximates the data distributions v;. Being
probability distributions, P(f|z), P;(z) and v; are points in the (F' — 1)-dimensional sim-
plex. In case of 3-dimensional distributions (a 3-dimensional input space), the generative
distributions and basis components lie within the Standard 2-Simplez (the plane defined
by points on each axis which are unit distance from the origin, see Figure 3-8) and hence

are easy to visualize.

\

Figure 3-8: The triangle formed by points on each axis which are unit
distance from the origin is called the Standard 2-Simplez. Tt is shown in
the figure by the blue region. All triples corresponding to 3-dimensional
multinomial distributions (so that the three numbers sum to unity) must
lie within the Standard 2-Simplex. Similarly, n-tuples corresponding to
a n-dimensional multinomial distribution lie within the Standard (n — 1)
Simplex.

To understand and visualize the workings of the model, we created an artificial data
set of 400 3-dimensional distributions and applied the latent variable model. The model
expresses the generative distribution P;(f) as a linear combination of basis components
P(f|z) where the mixture weights P;(z) are positive and sum to unity. Geometrically, this
implies that a given generative distribution is expressed as a point within the convex hull

formed by the basis components. Since P;(f) is constrained to lie within the simplex defined
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by P(f|z), it can only model v; accurately if the latter also lies within the convex hull. Any
v, that lies outside the convex hull is modeled with error. Thus, the objective of the model
is to identify P(f|z) such that they form a convex hull surrounding the data distributions
v;. This is illustrated in Figure 3-9 for 2 and 3 basis components.

Both the basis components and mixture weights encode information about the data set.
Basis components, being the corners of the convex hull that encloses all the data points,
encodes global characteristics about the data. The mixture weights, being associated with
individual data points (experiments), encode local characteristics. The intuition is that the
basis components correspond to characteristics of the random process that remain invariant
during the generation of all the data points (all experiments).

We now consider two special cases of the decomposition that adds insight to its nature.
Firstly, consider the case where we extract F' basis components, i.e. K = F', corresponding
to a complete code. One of the solutions corresponds to the case where the basis components

are such that

1 if f==2
P(flz) = (3.37)
0 otherwise,
where f € {1,...,F}, z € {1,..., F}. In terms of the matrix notation used in Section 3.3.3,
this implies that the basis component matrix W is given by the identity matrix I. In this
case, h, the mixture weight vector corresponding to P;(z), is equal to the data distribution
V¢, i.e. H = V. In other words, the basis components correspond to the corners of the
Standard (F — 1) simplex. Even though this corresponds to a perfect decomposition, it is
not of any utility since the basis components do not provide any meaningful characterization
of the data. They just represent the dimensions of the space in which the data lie. All the
information about the data points is encoded by the mixture weights.
If we try to extract more basis components than the dimensionality of the input space
F', we encounter the problem of indeterminacy. In such cases where we aim to extract an

overcomplete set of basis components, there are multiple ways of expressing the data distri-
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Figure 3-9: Illustration of the latent variable model on 3-dimensional dis-
tributions. Both panels show distributions represented within the Standard
2-Simplex given by {(001), (010), (100)}. Two Basis Components (top) and 3
Basis Components (bottom) extracted from 400 data points are shown. The
model approximates data vectors as points lying on the line approximation
(top) or within the convex hull (bottom) formed by the basis components.
Also shown are two data points (marked as + and x) and their approxima-
tions by the model (shown by < and [J). As one can see, the model gets
more accurate as the number of basis components increases from a compact
code of 2 basis components to a complete code of 3 basis components.
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butions as linear combinations of the basis components. This implies that there are multiple
feasible solutions that perfectly model the data. The second special case corresponds to the
decomposition where we extract as many basis components as there are data points, i.e.
K =T. One trivial solution when K = T occurs when the basis components are the data
distributions themselves. In matrix notation, this implies that the basis component matrix
W is equal to V. The mixture weight matrix H is then given by the identity matrix. In
this case, all the information about the data set is encoded by the basis components while

the mixture weights contribute no information.
3.5 Latent Variable Framework for Source Separation

As mentioned in Chapter 2, the magnitude spectrogram of an acoustic signal can be treated
as a histogram. Each time-frequency bin describes how much acoustic energy is present at
the particular frequency and the particular time frame. Since the latent variable model is
applicable to any data that can be considered as counts or histograms, we can apply it to
analyze magnitude spectrograms. In this section, we show how the model can be used to
extract frequency structure of all the sounds in the mixture and use the learned information
to extract the contributions of each source to the mixture spectrogram.

Let us formally introduce the problem. Let V represent the magnitude spectrogram
of a mixture sound signal. We would like to extract the magnitude spectrograms of each
source present in the mixture. Let us assume that we know the number of sources present
in the mixture and a set of training recordings is available for each source. Let L® represent
the magnitude spectrogram of the training data for the s-th source, where L%, denotes
the energy in frequency bin f at time frame ¢ for source s. There are two stages in the
separation algorithm. In the first stage, we learn the component multinomial distributions
for each source from the training spectrograms. In the separation stage, these learned basis
components are used to extract the contribution of the particular source to the mixture

spectrogram.
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3.5.1 Training Stage - Learning Parameters for Sources

In the learning stage, the component multinomial distributions denoted by Ps(f|z) are
learned for each source. The latent variable model is given by equation (3.15), which is

reproduced below:

P(f) = S P()PS12).

P,(f) represents the normalized counts of the ¢-th frame of L*, i.e. it is the underlying
generative distribution for the ¢-th time frame. We would like to characterize it as a mixture
of component multinomials Ps(f|z), each one weighted by a corresponding mixture weight
P,(z). The subscript s in Ps(f|z) indicates that these terms are specific to the source; the
aim of this stage is to learn these component multinomials for each source.

The parameters P,(z) and Ps(f|z) are initialized randomly and reestimated through

iterations of equations (3.17) and (3.25), reproduced below.

Fi(2) Ps(fl2)

RGN = SRR
X PGINLG

PR = S5 EehE
Y, RGINL

A S8 S BT

Only the Ps(f|z) values are used in reconstruction; the rest of the terms are discarded.
Figure 3-10 shows a few examples of typical Ps(f|z) distributions learned for a male and
a female talker. Figure 3-11 shows more examples of Ps(f|z) distributions characterizing

different sources.

3.5.2 Latent Variable Model for Mixture Spectrogram

Before we can describe how to separate the sources, we should have a model for approxi-
mating the mixture spectrogram.
In a mixture spectrogram, a fraction of the total spectral content in each frequency is

derived from each source. The spectrum is modeled as the outcome of repeated draws from
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Figure 3:10: The three histograms on the top panel shows typical multi-
nomial distributions obtained for a male talker. The three panels on the
bottom show typical multinomials for a female talker.
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(a) Speech Spectrogram (left) and Basis Components (right)

f oL L
T — = ’F_F%»’
1 2 3 4 5 6 7 8 9 10
z

(b) Piano Spectrogram (left) and Basis Components (right)
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(c) Harp Spectrogram (left) and Basis Components (right)

Figure 3-11: Examples of typical basis components learned from (a) speech,
(b) piano, and (c) harp. Notice that the basis components for different
signals are qualitatively different and have spectral structure characteristic
of the sources they represent.
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a two-level random process. Within each draw, the process first draws a source (represented
by the latent variable s), then a specific multinomial for the source (latent variable z), and
finally a frequency index f from the multinomial. The constraint here is that z takes on
a different set of values for each source. The overall distribution underlying the spectral

vector for the ¢-th analysis frame is given by

P(f)=>_Pds) > Pu(2ls)Ps(fl2), (3.38)

z€{zs}

where P,(s) is the a priori probability of the s-th source and {zs} represents the set of

values that z can take for that source.

3.5.3 Separating Sources from Mixtures

The process of extracting the contributions of each source to the mixture spectrogram
has two stages. In the first stage, the mixture multinomial distribution of each of the
sources is estimated in each analysis frame. This implies the estimation of all parameters
of equation (3.38) except the Ps(f|z) terms which are obtained from the training stage.
In the second stage, the separated spectrum for the source within every frame is obtained
as the expected value of the number of draws of each frequency index from the mixture
multinomial distribution for the source.
The P;(s) and Pi(z|s) terms of equation (3.38) can be estimated by iterations of the
following equations derived using the EM algorithm:
Pi(s)Pi(z]s) Ps(f]2)
5 P) S e o P PATT2)
docefay 2op Pi(s 2 [) Vit

Zs EZE{ZS} Zf Pt(87 Z’f)Vft

PN
P(z|s) = Zze{zs}ZfPt(S7Z’f)Vft. (3.39)

Pt(sv Z|f) =

Pt(S)

Details of the derivation are shown in Appendix A.

Once all the terms have been estimated, the mixture multinomial distribution for the
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s-th source in the ¢-th analysis frame can be obtained as
P(fls) = Y Pu(2ls)Ps(fl2), (3.40)
ZG{ZS}

According to the model, the total number of draws of any frequency is the sum of the draws

for the individual sources, i.e.
Vie=>_ Vpls), (3.41)
S

where Vi (s) is the number of draws of f from the s-th source. The expected value of

Vii(s), given the total count Vi, is hence given by

Fy) = L)

=S PPl Tt (3.42)

Vft(s) is the estimated value of frequency f in the spectral vector of the s-th source and
the t-th frame. The phase of the short-time Fourier transform of the mixed signal is paired
with the estimated magnitude given by Vft. An inverse Fourier transform is then performed

to obtain the time domain reconstruction for the source.

3.5.4 Separation Results

We now present results of experiments that demonstrate the applicability of the latent vari-
able framework for separation of talkers. Experiments were conducted on synthetic mixtures
of talkers taken from the Wall Street Journal (WSJ) database. We evaluated the results on
six pairs of talker combinations — two were female/male pairs, two were male/male, and two
were female/female. Three female and three male talkers were randomly chosen from the
database to obtain the six talker pairs. For every talker, the WSJ corpus consists of about
140 utterances comprising between 16 to 18 minutes of speech. Of these, 134 utterances
were randomly chosen to serve as the training set. The remaining 6 utterances were labeled
as the test set. The sampling rate for all the signals was set to 16 kHz.

We used short-term Fourier transforms to obtain spectrograms from the time signals.

We incremented our analysis frame by one-fourth of the FFT length. No zero padding was
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used, and data was shaped by a Hanning window before the FFT. We used various values
for the FFT size, taken from the set {128,256,512,1024,2048,4096}, corresponding to an
analysis window length ranging from 8 ms to 256 ms. All computations were performed
using MATLAB software.

Consider a given experiment where the task is to separate the two talkers present in the
mixture signal. In the training stage, we learned K basis components, K € {10, 20, 40, 80,
120, 160, 200}, from the training data for each talker. Following the procedure outlined in
Section 3.5.1, 15 randomly chosen utterances from the training set, comprising about 100
to 120 seconds of speech, were used to determine the basis components.

We created the mixture signal by digitally adding test signals for both talkers. The
length of the mixed signal was set to the shorter of the two signals. Prior to addition,
the signals were normalized to have () mean and unit variance, resulting in a 0 dB target-
to-interference ratio for each talker. The mixture spectrogram was analyzed using the
procedure outlined in Section 3.5.3 to obtain reconstructions of both talkers.

The quality of speech separation is hard to evaluate reliably. We provide two measures
that have been used in the literature. Let “O and ‘R represent the magnitude spectrograms
of the original test signal and the reconstructed signal of the i-th talker in the mixture. Let
N and ® represent the magnitude and phase of the mixture spectrogram. Define a function

21t 0%
(X)) =101 - - . . 3.43
g( ) 0810 (Zf,t |ZOft€ch)ft _ Xftejcbft|2 ( )

Following Raj and Smaragdis (2005), we define the SNR improvement for the i-th talker as
SNR; = g;('R) — g;(N) (3.44)

The second metric, Speaker Energy Ratio (SER), was used by Smaragdis (2007) and is
based on correlations between reconstructed and original signals. The SER for talker ¢ is
given by

SER; = 10logy, <ch> (3.45)
i Cij
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where ¢;; is the correlation between the reconstructed time signal for the i-th talker and
the original signal for the j-th talker.

Figures 3-12 and 3-13 summarize results, plotting SNR and SER improvements, respec-
tively, for various cases of FFT sizes and number of basis components. The SNR and SER
values were averaged over six experiments where each experiment had a different mixture of
test signals. The separation results for Male/Female talker combinations are much better
than the same sex talker combinations. We obtain average SNR improvements of up to 6
dB in the Male/Female case and up to 3 dB in the case of same sex talker pairs, primarily
because the basis components of talkers of the same sex have more similar characteristics
than basis components of different-sex talkers. There needs to be some difference in the
spectral quality of the sources present in the mixture for obtaining good performance with
the algorithm. The more similar the spectral characteristics are, the poorer performance
will be. The degree of separation achieved depends on the specific talker pair present in
the mixture; not all talker pairs of the same sex will result in poor separation. Performance
varies depending on the choice of FFT size and the number of basis components. In most
cases, FFT sizes between 512 and 2048, in conjunction with 40 to 80 basis components,
provides good performance. Figures 3-14 and 3-15 show how the FFT size and the choice
of number of basis components affect performance on average. Small values for FFT size
(128 points and less) will result in the omission of low frequencies in the representation,
while FFT sizes longer than phoneme widths fail to model formant variations present in
speech, thus resulting in poor performance. In theory, a larger number of basis components
better approximates a talker. However, if too many basis components are used, they begin
to model the other talker in the mixture, reducing performance. A choice of 40 or 80 basis
components and an FFT size of 1024 points provides reasonable performance across all
talker combinations. Figure 3-16 shows spectrograms from a particular example for the
Male/Female talker pair where the spectrograms used an FFT point size of 1024 and the

training stage extracted 80 basis components.
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FFT Size Number of Bases FFT Size Number of Bases

Figure 3-12: Average SNR improvements for various combinations of num-
ber of basis components and FFT sizes. The two top-panels correspond
to the two Male/Female talker pairs, middle-panels correspond to the Fe-
male/Female pairs and bottom-panels correspond to Male/Male pairs.
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Figure 3-13: Average SER improvements for various combinations of num-
to the two Male/Female talker pairs, middle-panels correspond to the Fe-
male/Female pairs and bottom-panels correspond to Male/Male pairs.

ber of basis components and FFT sizes.
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Figure 3-14: Average SNR and SER improvements for different FFT sizes.
Results are averaged over all talker pairs and number of basis components.
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Figure 3-15: Average SNR and SER improvements for different choices
of the number of basis components learned. Results are averaged over all
talker pairs and FFT lengths.
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Female — Reconstruction
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Figure 3-16: Result of a Separation Experiment for a Male/Female Talker
Pair, with 1024 point FF'T size and 80 basis components. The SNR and SER
improvements for the female were 6.6194 dB and 4.4414 dB respectively. For
the male, the improvements were 6.4959 dB and 5.1683 dB.
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3.5.5 Other Applications

The latent variable framework can be used for other applications in addition to source

separation. Below, we briefly present an example of semi-supervised denoising application.

Semi-supervised Denoising

Now, consider a situation where the available speech signal is noisy. The talker characteris-
tics are known a priori (i.e., clean training data from the talker is available), but the noise
present in the mixture is unknown. We can use the latent variable framework to remove
noise from the mixture.

As in the case of talker separation, we first learn a set of basis components for the talker
from the training data. The separation stage follows the processing steps discussed in the
talker separation application. In addition, we also update (learn) the basis components
representing the noise. In other words, for the known talker, we estimate the mixture
weights while keeping the basis vectors fixed; however we estimate both the basis vectors
and mixture weights for the noise component. Figure 3-17 shows an example in which
interfering chime noise from cymbals was removed from a noisy signal of female speech.

This approach of semi-supervised separation can also be used to extract foreground
singers or lead instruments from the background music in a song. Examples can be found
at http://cns.bu.edu/~mvss/courses/speechseg/.

Another example application of the latent variable framework is bandwidth expansion.
The idea is to estimate high-frequency components of narrow-band signals, such as sig-
nals carried over over a telephone channel. In the training stage, basis components are
learned from full-band signals. The estimation stage has two steps. We first estimate
mixture weights for the test signals by approximating them as linear combinations of the
narrow-band portion of the learned basis vectors. The full-band basis components are then
combined with the newly estimated mixture weights, from which counts for the unobserved

frequencies are estimated. Details and example results are reported in (Raj et al., 2007).
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Figure 3-17: Results of a denoising experiment using the latent variable
framework. The top plot shows the spectrogram of a speech utterance by a
female talker mixed with chimes from cymbals. Twenty bases were learned
from training data for the talker. During separation, five extra bases were
learned to account for the unknown source (cymbals). The separated speech
spectrogram (mid-panel) and noise spectrogram (bottom-panel) are shown.
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3.6 Discussion and Conclusions

This chapter introduced a probabilistic latent variable framework for single-channel acous-
tic processing. The central idea of the framework is to model the random process that
generates a given spectral vector as a mixture of hidden multinomial distributions. These
latent distributions or basis components are assumed to be characteristic of the source that
generates the entire set of spectral vectors comprising the signal. We presented the theory
and illustrated the workings of the model with a geometric interpretation. We derived
inference algorithms and showed how the framework can be used for source separation and
other applications, including denoising. We demonstrated the utility of the framework by
presenting results of separation experiments.

A framework using latent components or basis components is very powerful. Standard
models such as Gaussian Mixture Models or Hidden Markov Models that are typically
employed to model spectrograms work well for monophonic sounds. However, these mod-
els grow in complexity for polyphonic sound examples, and are not designed to model
the property of additivity, describing how energy from multiple sounds combines in each
frequency-time bin of the mixed signal. The latent variable framework provides an explicit
way to represent such mixture sounds as being composed of a linear combination of un-
derlying components. This allows the model to be simple and at the same time endows it
with the flexibility to model various types of mixtures. The second important advantage
of the latent variable framework is its probabilistic formulation, which allows us to employ
statistical methods for estimating model parameters. This approach also enables one to
model known or hypothesized structure in the data in the form of prior distributions. One
such prior, imposing sparsity, will be the focus of the next chapter.

An important limitation of the proposed framework is related to the number of compo-
nents that can be extracted. The number of components that are required to characterize a
particular source potentially could be very large. However, the proposed framework cannot

learn more components than the dimensionality of the spectral vectors, i.e. the number of
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frequency bins. As discussed in Section 3.4, two problems arise if we attempt to extract an
overcomplete set of basis components where there are more components than the dimen-
sionality of the spectral vector. First of all, there will be multiple feasible solutions, because
the problem will be under-determined. Secondly, the feasible solutions do not necessarily
characterize the data very well, a problem considered further in the next chapter. Thus,
the number of components that can be extracted is limited by the number of frequency
bins, which in turn depends on the representation chosen to describe the input. The di-
mensionality of the spectral vectors is not a true characteristic of the signal being analyzed,
but is instead just a characteristic of the representation selected for the signal. It is not
reasonable to expect the number of true underlying components of a signal to be limited
by the representation, and this problem reveals a logical flaw in the approach where an
arbitrary choice in the initial representation directly impacts the quality of the solution
that will be found. The next chapter extends and improves the model to overcome this

limitation, using the concept of sparsity.
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Chapter 4

Sparse Overcomplete Latent Variable Decomposition

Representation of the world, like the world itself, is the work of men; they de-

scribe it from their own point of view, which they confuse with the absolute truth.

Simone de Beauvoir
4.1 Introduction

This chapter presents an extension to the latent variable framework that allows it to over-
come the limitations discussed in the previous chapter. One of the main weaknesses of latent
variable decomposition is related to the number of basis components one can extract. When
modeling spectrograms, this limitation means that the number of basis components that
can be found is limited to be equal to or less than the dimensionality of the spectral vec-
tors. Thus, the model is limited by the representation that is chosen to describe the signal
being analyzed. In this chapter, we present a learning formulation that enables one to
extract an overcomplete set of meaningful components, with more components than the
dimensionality of the spectral vectors. We employ the notion of sparsity for this purpose.
Sparse coding refers to a representational scheme where, of a set of components that may be
combined to approximate or represent data, only a small number are necessary to represent
any particular input. In the framework of latent variable decomposition, one way to obtain
such a sparse overcomplete code of basis components is to constrain the mixture weights
associated with the basis components to have low entropy. A mixture weight set with low

entropy guarantees that only a few mixture weight terms are significant. We show that this
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approach eliminates the problem of indeterminacy, permitting us to learn an unrestricted
number of basis components. Mathematically, the general approach provides a way to ex-
plicitly control the entropy of any of the parameters of the model. Since entropy is an
information theoretic measure of “information,” the approach provides a way to control the
information content or the “expressiveness” of the basis components.

The chapter is organized as follows. Section 4.2 presents the theory and mathematical
concepts behind this extension. We motivate the need for sparsity, present entropy as a
sparsity metric, and show how it can be incorporated into the latent variable framework. We
use a maximum a posteriori formulation and derive inference algorithms. In Section 4.3,
we provide a geometrical interpretation of the model to give some intuition into sparse
overcomplete codes. Section 4.4 shows how the new formulation can be effective for source
separation and presents results of experiments. We briefly review other approaches that
have been used for sparsity in Section 4.5 and end the chapter with conclusions in Sec-

tion 4.6.

4.2 Sparsity in the Latent Variable Framework

This section introduces the concept of sparsity. We first motivate the need for sparsity in
the latent variable framework. We then show how it can be imposed in the framework and

derive inference algorithms.

4.2.1 The Need for Sparsity

Consider a real signal, such as a speech utterance. It is reasonable to expect that such real
signals exhibit complex spectral structure. The number of components required to model
the structure could potentially be very large. However, the latent variable framework as
introduced in the last chapter has an upper bound on the number of basis components
that one can extract. This limit is given by the dimensionality of the input vectors, which
in the case of spectrograms, is provided by the number of frequency bins. This is a clear

conceptual limitation, since the model is restricted by the representation used (which is
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an arbitrary choice, not grounded in any theoretical considerations) for the signal being

analyzed.

. ---Simplex Boundary
cH, - Data Points
i M Basis Vectors
—Convex Hull
(001) ~

Figure 4-1: Ilustration of multiple solutions in an overcomplete code of
four basis components. The basis components are marked A, B, C and D. A
typical data point ‘+’ can be expressed as a linear combination of the basis
components in several ways as evidenced by the multiple different convex
hulls in which it lies. The convex hulls are given by ABCD, ABC and ABD.

The main problem in extracting an overcomplete set of basis components is indeter-
minacy. There are multiple ways in which one can combine an overcomplete set of basis
components to approximate any particular data distribution. This is best illustrated by
utilizing the artificial dataset first presented in Section 3.4. An overcomplete set of four
basis components are shown in Figure 4-1, corresponding to the points A, B, C, and D. The
figure illustrates the various ways in which the basis vectors can be combined to represent
a typical data point. These basis points are capable of representing the data distributions
as the data falls within the convex hull defined by these points. However, there are many
different ways in which any given data point can be represented using these four basis

components.
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To overcome this problem of indeterminacy, additional constraints have to be imposed
during parameter estimation, to lead to a unique solution. The concept of sparsity is one
such constraint that has been widely used. The goal is to find a set of components such
that the mixture weights by which the basis components are multiplied prior to being added
to produce a datum are “sparse;” i.e., few of the weights are large. Adding a penalty to
solutions that require few non-zero weights will favor a sparse solution over another solution
that also can represent a particular datum, but requires more non-zero weights. Figure 4-2
illustrates a a sparse overcomplete code and compares the sparse code with a “dense” or

compact code.

A B Dense representation
.

A
]
data 3
feature 1 2
feature 2
feature 3 1
C Sparse representation D Hl Dense
A A O Sparse
3 2
2 A 1N
> 0 L
1 2 3

Figure 4-2: Reproduced from Asari et al. (2006), Figure 1, with the per-
mission of authors. (A) Three non-orthogonal feature vectors in a 2D space
constitute an overcomplete representation, offering many possible ways to
represent a data point with no error. (B) A dense representation that weights
all features roughly evenly. (C) A sparse representation that invokes only
two features. (D) The sparse and dense representations compared.
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4.2.2 Entropy as a Sparsity Metric

Different metrics have been proposed to measure sparsity. These metrics are used as con-
straints during model parameter estimation to favor sparse coding. These constraints cor-
respond to different cost functions that, during estimation, penalize the objective function
corresponding to the solution requiring more non-zero weights, thereby favoring equally
“good” solutions for reconstructing a datum that requires fewer non-zero weights. Consider
a distribution @ for which a sparse code is desired. Some approaches use variants of the L,
norm of € as the cost function to favor sparse coding (Hoyer, 2004) while other approaches
use various approximations of entropy of € as the cost function (Field, 1994). Instead of
using approximations for entropy, we directly calculate the entropy itself as a sparsity met-
ric and seek to reduce this metric at the same time that we find a solution that models the
data. Figure 4-3 illustrates how adding a constraint that favors reducing the entropy of the

mixture weights leads to a unique solution.

N (100)™, A_~Y ~7(010)
E\g(éoigthrﬁlggllzleiéo(g T 7 C ---Simplex Boundary
ACD, ACE, ACF \ ' - Data Points
’ ’ £ D = Basis Vectors

Figure 4-3: Illustration of sparsifying mixture weights in an overcomplete
code. A-G represent 7 basis components. The ‘4’ represents a typical
data point. This datum can be accurately represented by any set of three
or more bases that form an enclosing polygon; moreover, there are many
such polygons consistent with the underconstrained nature of the problem.
However, if the goodness of a solution weights the number of bases used to
enclose ‘+’ to be minimal, favoring solutions that use fewer non-zero weights,
only the 7 enclosing triangles listed may be optimal solutions. By further
imposing the restriction that the entropy of the mixture weights is to be
minimized, only one triangle is obtained as the unique, optimal enclosure.

There is another advantage of using entropy as a sparsity metric. In information theory,
entropy is a measure of the information encoded by a distribution. Reducing the entropy

of the mixture weights results in increased entropy of the basis vectors (increasing the in-
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formation they convey). Sparse-coding, where entropy of the mixture weights is reduced,
forces more information to be encoded by the basis components, making them more “ex-
pressive.” Thus, using entropy as a metric provides an explicit way to control the amount

of information present in the basis components versus in the mixture weights.

4.2.3 Parameter Estimation

The concept of entropic prior has been used in the maximum entropy literature (Jaynes,
1982; Skilling, 1989) to enforce sparsity. Given a probability distribution 6, the entropic
prior is defined as

P.(0) x e~ oMO) (4.1)

where H(6) = — ), 0;1og6; is the entropy of the distribution and « is a weighting factor.
Positive values of « favor distributions with lower entropies while negative values of o favor
distributions with higher entropies. Imposing this prior with positive o during mazimum
a posteriori estimation is a way to minimize entropy, which will result in a sparse 8 distri-
bution. The distribution @ could correspond to the basis components P(f|z), the mixture
weights P;(z), or both.

We use the EM algorithm to derive update equations for the parameters of the model.
Let us examine the case in which both P(f|z) and P,(z) employ the entropic prior?. The

model is given by the equation

P(f)=>_ P(f|2)Pi(2).

The set of parameters to be estimated are P(f|z) and P,(z) i.e. A = {P(f|z), Pi(z)}.

We impose an a priori probability on the parameters given by

P(A) Heazf P(f|2)log P(f|2) Heézz Pi(2)log Pi(2)
z t

9In this thesis, we only consider the case in which we impose a sparsity constraint on the mixture
weights P;(z). However, we present the case where both the basis components and mixture weights have
the entropic prior to keep the exposition general.
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where @ and (3 are parameters indicating the relative importance and sign of the sparsity
desired on P(f|z) and P;(z), respectively. Ignoring constant terms, the log-prior (logarithm

of the above a priori probability) can be written as
log P(A) =a» > P(flz)log P(f|z) + Y > Pi(z)log Pi(2), (4.2)
z f t z

We use mazimum a posteriori estimation and use the EM algorithm.

For the E-step, we compute the a posterior: probability of the latent variable as before:

el = LDPU ’ﬂ (43)

- XL P(2)P(fl)
In the M-step, instead of maximizing the log-likelihood, we maximize the log-posterior

(the logarithm of the a posteriori probability of the model parameters). The log-posterior

to be maximized is given by

L = D+R

EE\JF;A IOg P(fv 2) + log P(A)v (44)

where D = E; 75 log P(f,2) is the expected log-likelihood, R = log P(A) is the log-prior,
and f and Z represent the set of all observations of f and z in the draws that generated all
data vectors.

Let us consider the log-likelihood term D first. The complete data likelihood can be

written as
P(f,2) o< [ Po s 2) = [T Pr(z) P(fi129), (4.5)
Jit Jit

where f; and z; are the observed values of variables f and z in the j-th draw. Hence, we
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can write the function D as (ignoring the constant terms)

D = Eypay logPi(fj 2)
j7t
= ZEzﬂfj;AlOgPt(fj’Zj)
j7t

= ZEZJ|f AlogPt Zj +ZEZ]|f AlogP(fj|zj)

- ZZP z|fj)log Pi(z +ZZP z|f) log P(fj]2). (4.6)

In the above equation, we can change the summation over draws j to a summation over
features f by accounting for how many times f was observed, i.e. the f-th entry in the

observed data vector'?. The expected log-likelihood can now be written as

D= ZZ’YVftZPt z|f)log Pi(2 +227Vftzpt z|f)log P(f|z) (4.7)

The second term R in equation (4.4) corresponding to the log-prior is given by equa-

tion (4.2). Hence, we can write the function £ as (ignoring the constant terms)

L = D+R
= ZZ’YVftZPt z|f)log Pi(z +ZZ’YVftZPt z| f)log P(fl2)
—i—aZZP f12)log P(f|2) +ﬂZZPt )log Py(). (4.8)
Here, v is a parameter that weights the data while & and 3 are parameters weighting the
priors.

In order to take care of the normalization constraints, the above equation must be

augmented by appropriate Lagrange multipliers 7, and p,,

Q=L+> n(1-Y3 AE) + X p(1- 3 P(112). (49)
t z z f

1%Since observed data is modeled as a histogram, entries should be integers. To account for this, we
weight the data by an unknown scaling factor , without loss of generality.
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Maximization of @ with respect to Pi(z) and P(f|z) leads to the following sets of

equations
> ViePi(2] f) B
=B T telsP(fl) +p =0, (4.10)
U
WJrﬁJrﬂlogPt(ZHn:O, (4.11)

where o = @/ and 3 = (3/y. We have replaced two parameters weighting the data and
prior separately (v and & for equation (4.10), v and 3 for equation (4.11)) by a single
parameter that weights the prior with respect to the data (o and (3 in equations (4.10) and
(4.11) respectively).

Now, consider solving for P;(z). Equation (4.11) can be written as

Wz

Fi(2)

+ B+ Blog Pi(2) + 1 = 0, (4.12)

where w, represents >, Vi Pi(2]f). The above set of simultaneous transcendental equations
for P,(z) can be solved using the Lambert’s W function (Corless et al., 1996) as proposed
by Brand (1999a).

Lambert’s W function is an inverse mapping satisfying
Wy’ =y = logW(y) + W(y) = logy.

As shown by Brand (1999a), we can set y = e* and work backwards towards equation (4.12)

as follows,

0 = -W(")—logW(e") +x
= W—logW(e )+ +logg — loggq
—q
= —————— +logqg/W(e") +x —logg.
V() gq/W(e") gq

Setting © = 1 + 7/ + logq and ¢ = —w,/P(2), the above equation simplifies to equa-
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tion (4.12):
R LI M e
+1+ %
= ]“;:(/f) Flog Poz) + 1+ %
which implies that
Bi(z) = w2/ (4.13)

W(—woel /3 [B)’
where equations (4.12) and (4.13) form a set of fixed-point iterations for 74, and thus the M-
step for finding P;(z). Brand (1999a) points out that these equations typically converge in
2-5 iterations. Brand (1999b) provides details of computation of the Lambert’s W function.

P(f|z) can be found by solving the set of transcendental equations given by equa-
tion (4.10) using Lambert’s W function. It can be estimated as

~¢/a
(—€er I /a)’

Pf12) = 35 (4.14)

where £ is Y, Vi Pi(2|f). Equations (4.10) and (4.14) form a set of fixed-point iterations

and correspond to the M-step updates for P(f]|z).

4.2.4 Examples

Consider a simple music clip shown by the magnitude spectrogram in Figure 4-4. This
example can be used to show how sparsity can be useful in analyzing sounds. The music clip
consists of three notes played successively followed by a chord which is composed of all the
three notes. Learning three basis components by performing latent variable decomposition
on the spectrogram provides results as shown in Figure 4-5(a). The three components
correspond to the three notes present in the clip. The mixture weight corresponding to
any particular basis component is high in all those time frames where that note is “on.” In
the last segment of the clip corresponding to the chord, mixture weights of all the three

components have roughly equal values indicating that all the three notes are present.
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Figure 4-4: Spectrogram of a piano music clip. It represents three notes
played successively followed by a chord which is composed of the three notes.
The abscissa represents time and the ordinate represents frequency.
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(a) Basis Components P(f|z) (left) and Mixture Weights P;(z) (right) learned with no sparsity.
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(b) Basis Components P(f|z) (left) and Mixture Weights P;(z) (right) learned with no sparsity.
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(c) Basis Components P(f|z) (left) and Mixture Weights P;(z) (right), learned with sparsity imposed

on Pi(z).
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Figure 4-5: (a) and (b) show 3 and 4 basis components learned from
the spectrogram of Figure 4-4. Also shown are the corresponding mixture
weights. (c) shows 4 basis components and corresponding mixture weights
that were learned by imposing sparsity on the mixture weights.



72

Now, suppose one would like to have a decomposition in which, in addition to the indi-
vidual notes, the chord is also extracted as a separate basis component. This is intuitively
appealing, since a combination of notes that are harmonic (as is the case in this exam-
ple) is perceptually recognized as a distinct entity rather than as a combination of distinct
sounds. Figure 4-5(b) shows the result of latent variable decomposition where four basis
components were extracted. Notice that the additional component, instead of modeling the
chord, represents the transitions between the notes. The solution in which the additional
component corresponds to the chord is a feasible solution but is no more likely than the
solution shown in the figure.

Addition of the sparsity (entropic) prior on the mixture weights P;(z) provides a way to
extract the chord as a separate component. The sparsity constraint implies that mixture
weights corresponding to few basis components have values that are significantly above zero.
If the value of the sparsity parameter chosen is appropriately high, this constraint forces
only one of the basis components to be “active” in any particular time frame. Thus, each
of the basis components that are learned end up representing the spectral structure in the
time frames in which corresponding mixture weight values are high. This is illustrated by
the results shown in Figure 4-5(c) where the four components correspond to the three notes
and the chord. The sparsity constraint makes such a solution more likely when compared
to all the other feasible solutions.

Another example that illustrates the effect of sparsity is shown in Figure 4-6. The model
was used to analyze handwritten digits from the USPS Handwritten Digits database!l.
Twenty-five basis components were extracted by analyzing 1000 different instances for every
digit, with the additional constraint that the mixture weights be sparse. Each instance
of a digit was given by the pixel intensities as a 16 x 16 matrix. We unwrapped each
matrix and treated it as a 256-dimensional vector, representing the set of 1000 vectors as
a 256 x 1000 matrix V. The matrix V was used as the input to the algorithm. Figure 4.6

shows the extracted components for digits “2” and “3.” Notice the qualitative difference in

"from http://www.cs.toronto.edu/~roweis/data.html.
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Figure 4-6: Latent Variable Model applied on the USPS Handwritten Dig-
its database, with the additional constraint that mixture weights be sparse.
Twenty-five basis components were learned from the data set. Basis compo-
nents wereextracted for the digits “2” (top) and “3” (bottom), shown in the
left panels as 5 x 5 tiles. The smaller panels on the right show the mixture
proportions with which the basis components combine to approximate the
input vectors. In this example, we constrained mixture weights to be sparse
by imposing a sparsity parameter of 0.2 (5 = 0.2).
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Figure 4-7: Twenty-five basis components learned from training data for
class “3” with increasing sparsity parameters on the mixture weights. The
sparsity parameter was set to (from top-left in clockwise direction) 0, 0.05,
0.2, and 0.5, respectively. Increasing the sparsity parameter for the mixture
weights produces basis components that are more representative of instances
of the input set rather than part-like features of the inputs.



75

the extracted components compared to those on Figure 3-6, demonstrating the qualitative

change in the basis components when sparsity constrains the solution.
4.3 Sparse Overcomplete Coding: Geometry

In Section 3.4, we used a data set of 400 3-dimensional multinomials to understand and
visualize the geometry of the latent variable model. And in the previous section, we have
derived a method to impose sparsity in the framework. We use the same dataset to un-
derstand how sparsity makes a difference in the model. Figure 4-8 reproduces the dataset,

where each multinomial distribution is represented as a point in the Standard 2-Simplex.

DATA

—Simplex Boundary
(001) + Data Points

Figure 4-8: 400 3-dimensional multinomial distributions represented in the
Standard 2-Simplex.

As mentioned earlier, the problem of overcomplete codes is indeterminacy if sparsity is
not imposed. One can still arrive at one of the many feasible solutions. Figure 4-9 shows
the effect of increasing the number of basis components in an overcomplete code without
imposing sparsity. As the number of basis components increases, the convex hulls formed

by the bases “expand” around the data. This larger set of basis components can accurately
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3 Basis Vectors (010) 4 Basis Vectors (010)

Figure 4-9: Ilustration of the effect of number of basis vectors on the
latent variable model applied on 3-dimensional distributions. Points are
represented within the Standard 2-Simplez given by {(001), (010), (100)}.
The model was applied on the data set of 400 points shown in Figure 4-8 to
extract 3, 4, 7, and 10 basis components. Fach case consisted of 20 repeated
runs and the resulting convex hulls formed by the basis components were
plotted as shown in the panels from left to right. Notice that increasing the
number of basis vectors enlarges the sizes of convex hulls.
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Figure 4-10: Illustration of the effect of sparsity on the latent variable
model applied on 3-dimensional distributions. Points are represented within
the Standard 2-Simplex given by {(001), (010), (100)}. The latent variable
model was applied on data shown in Figure 4-8 to extract 7 basis compo-
nents with different values of the sparsity parameter on the mixture weights.
There were 20 repeated runs for a given value of the sparsity parameter and
the resulting convex hulls are plotted as shown. Increasing the sparsity of
mixture weights makes the resulting convex hulls more compact. The case
when no sparsity was imposed was shown in Figure 4-9.
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Figure 4-11: Illustration of the effect of sparsity on the latent variable
model applied on 3-dimensional distributions. Points are represented within
the Standard 2-Simplex given by {(001), (010), (100)}. The latent variable
model was applied on data shown in Figure 4-8 to extract 10 basis compo-
nents with different values of the sparsity parameter on the mixture weights.
There were 20 repeated runs for a given value of the sparsity parameter and
the resulting convex hulls are plotted as shown. Increasing the sparsity of
mixture weights makes the resulting convex hulls more compact. The case
when no sparsity was imposed was shown in Figure 4-9.
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represent the data but are less characteristic of the distribution of data points. In other
words, the new set of basis components is less informative about the data set. Consider
the extreme case where we have the set of corners of the 2-simplex as basis vectors. They
accurately represent the data set but do not provide any information. This is because they
can represent not just this dataset but any other data set with perfect accuracy.

However, imposing sparsity on the mixing proportions gives us desirable properties.
Figures 4-10 and 4-11 show that as the sparsity parameter is increased, convex hulls formed
by the basis components get more “compact” around the data. Since few basis components
contribute to any particular data instance, they are more data-like, or in other words, pro-
vide more holistic representations of the input space. Figure 4-7 shows 25 basis components
extracted from hand-written examples for digit “3.” The components become more repre-
sentative of “3” as the mixture weights become more sparse. In terms of how information
is encoded about the distribution of the data, increasing sparsity of the mixture weights
pushes information from the mixture weights to the basis components. This occurs because
reducing the entropy of the mixture weights increases the entropy of the basis components
in the model (see Figure 4-13). This pushes the basis components from the corners of the
standard simplex towards the center. In the extreme case in which the set of basis com-
ponents is given by the entire data set itself, all the information is encoded by the basis

components, with the mixture weights providing no information.

4.4 Sparse Decomposition for Source Separation

In this section, we explore how sparse latent variable decomposition can be used for source
separation with a procedure similar to that presented in Section 3.5. The main difference
is in the training stage, where we learn overcomplete sets of basis components by imposing
sparsity on the mixture weights. The separation stage remains the same, where using the
learned basis components, the remaining parameters of the mixture spectrogram model are
estimated using a maximum likelihood formulation.

As before, let V represent the magnitude spectrogram of a mixture signal. Let L?
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represent the magnitude spectrogram of the training recording for the s-th source, where

L%, denotes the energy in frequency bin f at time frame t.

4.4.1 Training Stage

In the training stage, we learn basis components, denoted by Ps(f|z), for each source. The
model is given by equation (3.15).

For a given source s, the parameters P(z) and Ps(f|z) are initialized randomly and
reestimated through iterations of the equations derived in Section 4.2.3. Mixture weights
are estimated with a positive entropic prior imposed on them. To summarize, the update

equations can be written as

__B(x)P(f]2)
P(z|f) = S RGP (4.15)

> Pi(=lf) ;t

Py(flz) = 5,5, PG, (4.16)
0 = P‘:(';) + B+ Blog P(z) + (4.17)
P(z) = v/ (4.18)

W(—wzel /8 /)"

where (3 is the sparsity parameter and w, represents Zf L‘}tPt(z|f).

A given training iteration includes one update each of equations (4.15) and (4.16), and
2-5 iterations of the fixed-point equation pair for 74, given by equations (4.17) and (4.18).

Only the P,(f|z) values are used in reconstruction; the rest of the terms are discarded.
Figure 4-12 shows examples of a sparse overcomplete set of basis components learned for
a female talker. Examples of a compact code, found when sparsity is not imposed on the
mixture weights, are also shown for comparison. The sparse overcomplete component solu-
tions exhibit harmonic structure similar to what is observed in speech signals. Figure 4-13
illustrates how the average entropies of basis components and mixture weights vary with
different values of the sparsity parameter 3. Reducing the entropies of mixture weights
increases the entropy of basis vectors. Thus, empirical evidence shows that a set of sparse

overcomplete basis components can also be obtained by having a negative entropic prior
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on the basis components. This observation, while interesting, is beyond the scope of this

thesis, and is left for future work.

4.4.2 Separation Stage

To separate the mixture spectrogram, we use the model presented in Section 3.5.2. The
overall distribution underlying the spectral vector for the ¢-th analysis frame of the mixture

spectrogram is given by

P(f)=)_Pis) Y Pizls)P(fl2), (4.19)

ZE{ZS}

where Py(s) is the a priori probability of the s-th source and {z;} represents the set of
values that z can take for that source.

We do not impose sparsity during separation. Sparsity is used in the training stage
to ensure that a large set of basis components is found that can characterize the sources
in the training set. In the separation stage, we utilize these learned basis components
to approximate the mixture spectrogram. As derived in Section 3.5.3, we estimate the

parameters of the model by iterations of equations (3.39), which are reproduced below:

Bi(s) Bi(2]s) s (f12)

Py(s,z|f) = 25 Pe(8) 2o seqnny Pe(2l) Ps(fl2)
Py(s) = Dcefnsy 2af Pi(8, 2 )V
t N ZSZZE{ZS}ZfPt(S,Z|f)Vft
P(z]s) = > o5 Brls 2| f)Vie

Y etmy 2o Pe(s 2 ) Vi

The spectrogram of the s-th source can be estimated as

-~ P(s)P(f]s)
) = R P (4.20
where Py(f|s) is given by
Pi(fls)= Y Puzls)P(f12). (4.21)
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Figure 4-12: (a) A subset of 80 basis vectors from a total of 160 basis
components learned for a female talker. Sparsity was not imposed on the
mixture weights during estimation. (b) A subset of 80 basis components out
of a total of 1000 learned basis components for the same talker. Sparsity
was imposed (8 = 0.3) on the mixture weights during estimation. Darker
values of the grayscale correspond to higher probabilities.
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Figure 4-13: Illustration of how enforcing sparsity on the mixture weights
changes the average entropy of the mixture weights (top panel) and the
basis components (bottom panel). Average entropy was calculated during
the training stage when 750 (red squares) and 1000 (blue triangles) basis
components were learned. Notice that decreasing entropy of the mixture
weights is equivalent to increasing the entropy of the basis vectors. Using a
set of overcomplete basis components can be considered more “expressive”
in the information-theoretic sense.
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Once the values are estimated for all f and ¢, the phase of the short-time Fourier transform
of the mixed signal is combined with the estimated magnitude spectrogram. An inverse

Fourier transform is performed to obtain the time domain reconstruction of the source.

4.4.3 Separation Results

Experiments evaluated the separation performance for the proposed method on synthetic
mixtures. Experiments were done on the same set of talkers used in Section 3.5.4. We used
six pairs of talkers chosen from the Wall Street Journal (WSJ) database: two pairs were
female/male, two were male/male and two were female/female.

A set of 134 utterances comprising approximately 16 minutes of speech was sepa-
rated as training data for each talker. Signals were sampled at 16 kHz and short-term
Fourier transforms were generated with an FFT point size of 1024, hop size of 256 be-
tween frames, and a Hanning window. The dimensionality of each spectral vector was 513
(F = 513). For the overcomplete case, 750 or 1000 basis components were learned for
different values of the sparsity parameter 3. The set of values used for 3 is given by the set
{0.005,0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.5,0.7,0.9}.

For a given pair of talkers, mixed signals were obtained by digitally adding different
pairs of test signals. The length of the mixed signal was set to the shorter of the two
signals. The component signals were all normalized to 0 mean and unit variance prior to
addition, resulting in 0 dB SNR for each talker. A set of five mixed recordings were obtained
as test cases for every talker pair considered. Figure 4-14 shows example spectrograms of
reconstructions from a mixture with male and female talkers. In this case, a sparsity
parameter of 3 = 0.3 was used in the training to estimate an overcomplete set of 1000
basis components. For evaluating the quality of separation, SNR (equation 3.44) and SER
(equation 3.45) introduced in Section 3.5.4, were computed.

Figures 4-15 and 4-16 illustrate the effect of changing the sparsity parameter on separa-
tion. Experiments were conducted on two test mixture signals belonging to a Male/Female

talker pair. Different values of the sparsity parameter was used during the training phase.
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Mixture

Female — Original

Female — Reconstruction

Male — Original

Male — Reconstruction

Figure 4-14: Result of a separation experiment for a male/female talker
pair, with 1024 point FFT size and 1000 basis components (8 = 0.3). The
SNR and SER improvements for the female were 8.1208 dB and 5.7684 dB
respectively. For the male, improvements were 8.1320 dB and 5.7681 dB.
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Figure 4-15: Results of separation experiments that illustrate the effect
of the value of the mixture weight sparsity parameter 5 on the quality of
separation. Overcomplete sets of 750 basis components were extracted with
the sparsity (entropic) prior and separation (Male/Female talker pair) was
performed. The panels display the average SNR and SER values of the re-
constructed signals. The top and bottom panels correspond to two different
test mixtures.
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Figure 4-16: Results of separation experiments that illustrate the effect
of the value of the mixture weight sparsity parameter 5 on the quality of
separation. Overcomplete sets of 1000 basis components were extracted
with the sparsity (entropic) prior and separation (Male/Female talker pair)
was performed. The panels display the average SNR and SER values of
the reconstructed signals. The top and bottom panels correspond to two
different test mixtures.
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The SNR/SER improvements of the separated signals are plotted in the figures. There is a

general trend for separation to improve with increasing values of the sparsity parameter.
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Figure 4-17: Talker separation evaluation results in terms of SNR (Sig-
nal/Noise Ratio) improvements (in dB) for the sparse overcomplete code
(in Blue) and for the compact code (in Red). The Y-axis corresponds to
the SNR improvement for the first talker while the X-axis represents the
improvement for the second talker. Each point corresponds to a particular
experiment. Different symbols represent different talker pairs in the mix-
tures. Each point in Panel (D) is the average of the corresponding points
in the first three panels. Notice that the sparse code consistently performs
better than the compact code.

Figures 4-17 and 4-18 summarize results of experiments comparing performance for the
sparse overcomplete code and the compact code. The compact code corresponded to a

set of 100 basis components estimated without the imposition of sparsity, while the sparse
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Figure 4-18: Talker separation evaluation results in terms of SER (Speaker
Energy Ratio) improvements (in dB) for the sparse overcomplete code (in
Blue) and for the compact code (in Red). The Y-axis corresponds to the SER
improvement for the first talker while the X-axis represents the improvement
for the second talker. Each point corresponds to a particular experiment.
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Different symbols represent different talker pairs in the mixtures.

point in Panel (D) is the average of the corresponding points in the first
three panels. Notice that the sparse code consistently performs better than

the compact code.
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overcomplete code used a set of 1000 basis vectors estimated with a sparsity parameter of
B = 0.7. For every talker pair, separation was evaluated using both the sparse overcom-
plete code and the compact code for five different mixtures. Figure 4-17 plots the SNR
improvements of the two reconstructed signals against each other, while Figure 4-18 plots
the speaker energy ratios. Every point in the figures corresponds to the result of one ex-
periment. Points in blue correspond to results with the sparse code while points in red
correspond to results from the compact code. All the results for a given talker pair are
represented by the same symbol; different symbols represent different talker pairs. Results
show that the sparse code performs significantly and consistently better than the com-
pact code, for both metrics. A few examples of the separated signals can be obtained at

http://cns.bu.edu/~mvss/courses/speechseg/.

4.5 Other approaches to Sparsity

Finally, this section presents a brief overview of other approaches to sparsity that have
been used in the literature. Sparsity has been used in techniques that model inputs as a
linear combination of bases (kernels) and mixture weights. Two groups of techniques are
presented: approaches motivated by neural coding theory and approaches motivated by

machine learning applications.

4.5.1 Neural Coding Theory

Sparse coding is thought to be a fundamental principle driving biological sensory and neural
systems to encode and process sensory information (Kanerva, 1988; Field, 1994; Olshausen
and Field, 1996). Several theoretical, computational and experimental studies suggest that
neurons encode sensory information using a small number of active neurons at any given
point in time (Olshausen and Field, 2004) as a way to minimize the metabolic energy or
cost of encoding information. Furthermore, sensory systems are thought to transform the
input into a code that reduces the redundancy among the elements of the input stream, fol-

lowing the ideas of Attneave (1954) and Barlow (1959, 1961), who argue that the principles
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information theory can be used to understand perceptual processes.

Consider basis decomposition models that have been proposed to understand sensory
coding (Olshausen, 2001; Lewicki, 2002; Smith and Lewicki, 2006). The data vector v (or
the underlying generative distribution in the case of a latent variable model) is approximated
as Wh, where the columns of W are basis components and the elements h; of the vector h
are the mixture weights. In this context, this goal of efficient coding is equivalent to finding
a set of basis vectors that forms a complete code (i.e., spans the input space) and results
in mixture weights that are as statistically independent as possible, given an ensemble of
inputs. One way of achieving this, as suggested by Field (1994), is to have a representational
scheme in which only a few (out of a large population) of the basis components are required
to explain any particular data vector. Such a representational scheme is referred to as
a sparse code. As Olshausen and Field (1996) explain, the existence of any statistical
dependencies among a set of variables h; may be discerned whenever the the joint entropy
is less than the sum of the individual entropies (i.e., H(h1, ho,..., hy) < >, H(h;), where
‘H is the entropy). A possible strategy for reducing statistical dependencies is to lower
the individual entropies H(h;). Thus, reducing entropies of mixture weights is equivalent
to having a sparse code of basis components. In the approach presented in this chapter,

entropy is reduced directly by making use of the entropic prior on the mixture weights.

4.5.2 Machine Learning

Component-wise decompositions have played an important role in machine learning appli-
cations. Popular techniques include Principal Components Analysis (PCA), Independent
Components Analysis (ICA), Non-negative Matrix Factorization (NMF), and others. These
techniques express inputs as mixtures of data-dependent components that are learned dur-

ing estimation. We focus on the latter technique, NMF, and briefly review research work

that has attempted to extend NMF by incorporating sparsity!?.

128parse extensions to PCA and ICA have been proposed: see (Zou et al., 2004) and (Zibulevsky and
Pearlmutter, 2001), respectively, for examples. Also, there is a body of literature on sparse representation
of signals using a known dictionary such as Fourier Bases or wavelets. These approaches use algorithms
like basis pursuit (Chen et al., 2001) and linear/quadratic programming (Donoho and Elad, 2003; Fuchs,
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One of the important properties of NMF is that it usually produces a sparse represen-
tation of the data. Lee and Seung (2001) point out that basis vectors of NMF used in
distributed, yet sparse combinations generate expressiveness in the reconstructions. How-
ever, as Hoyer (2004) points out, sparsity given by NMF is a side-effect rather than a goal
of the algorithm. This idea is supported by recent research work aimed at developing sparse
versions of NMF (Eggert and Korner, 2004; Heiler and Schnorr, 2006; Hoyer, 2004; Morup
and Schmidt, 2006; Pascaul-Montano et al., 2006). Hoyer (2004) introduced an algorithm
that used a sparsity measure based on L; and Ls norms and used this sparsity measure to
derive a projected gradient descent algorithm. Update equations were derived by minimiz-
ing the Fuclidean distance measure between data and the reconstruction. Instead of the
L1 norm, Morup and Schmidt (2006) and Eggert and Korner (2004) use a general function
of the mixture weight matrix H as a penalization term during estimation. They suggest
that any function with a positive derivative can be used as a penalty term. While Eggert
and Korner (2004) use an objective function based on the Euclidean distance to derive the
updates, Morup and Schmidt (2006) use a KL-distance measure. However, neither paper
proves that the update equations converge to a solution. Pascaul-Montano et al. (2006)
take a different approach by imposing a multiplicative smoothing matrix during estimation
that enforces sparsity.

While several other extensions exist, the studies mentioned above are representative of
the various approaches. The review, however, does not constitute an exhaustive survey of

sparse extensions to NMF.
4.6 Conclusions

This chapter introduced an important extension to the latent variable framework. The
framework from the previous chapter is limited by a restriction on the number of components
that can be learned. Here, a learning formulation that addresses this limitation is derived

that utilizes the notion of sparsity. An entropic prior in a maximum a posteriori formulation

2004) for Ly norm minimization to obtain sparse representations. This work is beyond the scope of work
reviewed in this thesis.



93

enforces sparsity. A geometric interpretation of the model was presented using an artificial
dataset. Enforcing sparsity in the framework enables one to learn an overcomplete set
of latent components which can better characterize the data. Inference algorithms were
derived, and the framework was applied to the problem of source separation. Experimental
evidence of the utility of such sparse overcomplete representations was presented. The
sparse decomposition framework presented in this chapter and in the previous chapter is
general in its scope and applicable to data other than acoustic spectrograms. For instance,

Appendix B presents three applications of the framework for analyzing image data.
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Chapter 5

Conclusions

5.1 Thesis Overview

The cocktail party effect is a challenging problem from a computational perspective. One
fundamental question is whether it is possible to build a machine capable of solving the
cocktail party problem in a satisfactory manner. A simpler formulation of the question
would be whether machines can identify/separate sources from the acoustic signal of an
auditory scene. Many researchers have attempted to answer this question and build such
an automatic system. This thesis represents a step towards that goal.

The focus of this thesis is single-channel audio. There has been relatively little work on
modeling single-channel sounds compared to the large body of work on blind-source separa-
tion with multiple input channels. Dealing with just one signal of an acoustic event instead
of many makes the problem formulation simpler, albeit harder since there is much less infor-
mation with which to work. Instead of building a system that solves a particular problem,
a framework for modeling single-channel audio was developed, based on probability theory,
which is the natural language to express uncertainty.

Specifically, a latent variable model was proposed to model time-frequency representa-
tions (eg. spectrograms), where the energy in a time-frequency bin is treated as a histogram
count of multiple draws. A variant of a specific kind of latent variable model called “la-
tent class models” were used, built on the principle of local independence (or the common
cause criterion). This a powerful formulation and has been used to extract latent structure
from data in a variety of fields such as social sciences (latent structure analysis), analy-

sis of text corpora (latent semantic analysis), and machine learning (non-negative matrix
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factorization), among others. The formulation allowed the underlying distribution of each
spectral vector to be modeled as a mixture of multinomial distributions. The component
multinomial distributions were assumed to be the same for all spectral vectors of a given
source, while the proportions with which they combined to generate a particular vector
differed from frame to frame. The intuition was that these latent components are learned
so that they characterize the source, and not individual spectral vectors. Chapter 3 pre-
sented the theory and derived inference algorithms to realize the approach. Experimental
evidence of the applicability of the proposed framework to single-channel audio processing,
by demonstrating source separation and denoising experiments, was also presented.

An important limitation of the proposed framework is that the number of latent com-
ponents that can be extracted is limited by the dimensionality of the input space, which,
in the context of time-frequency representations, is given by the number of frequency bins.
The number of components required to model a complex sound signal potentially could be
large and should not be limited by the arbitrary choice of representation. To overcome the
limitation, an extension employing the concept of sparsity was presented (Chapter 4). An
entropic prior in a maximum a posteriori formulation was used to enforce sparsity. Lowering
entropy of the mixture weights to extract an overcomplete set of basis components results
in components that are more “expressive” and better characterize the data. The theory and
inference algorithms were presented in Chapter 4 along with experiments that provided
evidence of the utility of such sparse-overcomplete representations for single-channel audio
processing applications.

To summarize, a probabilistic latent variable framework to model single-channel audi-
tory signals was developed. The statistical framework makes the proposed models amenable
to principled extensions and improvements. One such extension, incorporating sparsity by
employing the entropic prior, demonstrated the advantages of the extension. More gen-
erally, the extension demonstrates how the method can be extended to impose known or
hypothesized structure about the data by utilizing prior distributions on the parameters,

thus pointing to other possible extensions of the general framework proposed.
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5.2 Future Work

The work presented in this thesis points to several extensions, some of which are mentioned

below.

Representation

Here, magnitude STFTs were used as inputs for evaluating the performance of the frame-
work. As mentioned previously, one can utilize other representations and compare perfor-
mance, including TF representations with a log-frequency spacing (Brown, 1991) and TF
representations that are physiologically motivated (Patterson et al., 1995; Irino and Pat-
terson, 1997). The possibility of utilizing multidimensional generalizations of the frame-
work (PLCA) to analyze more sophisticated representations of sound such as correlograms
(Slaney and Lyon, 1990) and higher-order spectral representations (Nikias and Petropulu,
1993) can also be explored.

The current work ignores the phase information of the sounds and the mixture during
analysis. However, studies have shown that phase-spectra carry rich information that can
be utilized. For example, experiments by Alsteris and Paliwal (2005) suggest that magni-
tude spectra can be uniquely reconstructed from phase spectra, although recovering phase
from magnitude spectra is not feasible. Future work should explore how to utilize phase
information in the present framework. Other avenues include extending the framework to

handle multimodal signals such as audio-visual signals.

Model and Theory

The probabilistic foundation of the proposed framework allows it to be easily extended.
Specifically, the framework allows one to impose structure on the data by employing prior
distributions. The methods proposed so far do not explicitly model the structure present
in the mixture weights in a way that captures correlations. In other words, the approach
does not model how the basis components co-occur to generate a given spectral vector. One

could impose various priors to model this explicitly. The most straightforward choice for
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modeling multinomials is the Dirichlet distribution (Minka, 2003) - a conjugate prior for the
multinomial distribution (Blei et al., 2003). However, our experiments with the Dirichlet
prior (Raj et al., 2006) did not result in significant improvements in source separation.
Other choices for the prior include mixture Dirichlet distributions (Bouguila et al., 2004)
and the logistic normal distribution (Blei and Lafferty, 2006a). The next step would be
to explicitly model the time structure by using hidden Markov models, or other dynamic
models (e.g., Blei and Lafferty, 2006b). Secondly, the latent components of the framework
can be modeled further in a hierarchical way. One can use existing approaches such as
Gaussian mixtures to model each component separately.

In terms of the learning paradigm, the proposed framework is not discriminative in na-
ture. For the source separation problem that we have formulated as a supervised learning
problem, it would be more beneficial if the source-dependent components can be learned
in a discriminative fashion. This would be especially helpful in cases where the sources
present in the mixture exhibit similar spectral structure. Preliminary experiments were
conducted that explicitly modeled structure common to both sources of the mixture by
learning a separate set of “common basis components” from training data of both sources.
This approach yielded marginally better separation and is worthy of further research. An-
other approach is to enforce a prior during learning that increases the “distance” (in latent
variable space) between the sets of components of the different sources. One possibility is
to use the concept of independence between sets of vectors, as has been done with Inde-
pendent Subspace Analysis (Hyvarinen and Hoyer, 2000). If this approach is successful, it
opens the possibility of utilizing the approach in an unsupervised framework to learn and
separate sources from the mixed signal, obviating the necessity of a training stage.

Related to the above approach is the question of how sparse decomposition relates to
ICA. Experiments and empirical results suggest that entropy manipulation of the param-
eters in the proposed framework produces results similar to non-negative ICA algorithms
(Plumbley, 2003). More theoretical analysis is required to fully understand the relationship

between these approaches. Another approach that is related to the work presented here
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is the emerging field of “compressed sensing” (Candes, 2006; Candes and Tao, 2006). The
idea is that it is possible to reconstruct signals accurately from a number of samples which
is far smaller than the signal resolution (e.g., reconstructing an image from fewer number
of samples than the number of pixels in the image). Research in this field utilizes sparsity,
L1 norm minimization, and related concepts. Methods of obtaining sparse codes presented
in this work might find applicability in compressed sensing and should be explored further.

And finally, there is room for improvements and analyses of the inference algorithms
used to find solutions. Specifically, one can consider alternatives and improvements of the
EM algorithm, such as tempered EM, to improve the rate of convergence and the quality

of the found solutions.

Applications

This thesis focused on the application of the framework to audio source separation problems.
However, it can also be used for other applications, including music transcription, auditory
scene analysis, denoising, bandwidth expansion, speaker recognition, audio classification,
and more. We have also mentioned that the framework is more general and demonstrated
its utility for three image processing applications. Applications of the framework to an-
alyze data in other domains, such as data-mining, brain imaging, text semantic analysis,

radiology, chemical spectral analysis, etc., should be explored.

5.3 Concluding Comments

A general probabilistic framework for analyzing multi-dimensional non-negative data was
developed. Future researchers should utilize this framework and extend it further to appli-
cations in other fields and domains. Specifically, this work may spawn research efforts to

build a machine with “auditory awareness” of its surroundings.
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Appendix A

Latent Variable Model: Inference for a Mixture

Spectrogram

Section 3.5.2 presented the latent variable model for a mixture spectrogram. The model is

given by equation (3.38), as reproduced below:

P(f) =" Fls) Y Pzls)P(fl2), (A1)

z€{zs}

where P;(f) is the overall distribution underlying the ¢-th analysis frame of the mixture
spectrogram, P;(s) is the a priori probability of the s-th source, Ps(f|z) is the z-th ba-
sis component for the s-th source, P;(z|s) is the corresponding mixture weight, and {z,}
represents the set of values that z can take for that source. Let V represent the observed
mixture spectrogram where Vy; represents the energy in the f-th frequency bin and the
t-th analysis frame.

In this appendix, we derive update equations for the parameters of the above model.
There are two latent variables in the model - z reflects the index of the latent basis vec-
tor and s reflects the source being considered. Following the approach presented in Sec-
tion 3.3.2, we use a maximum likelihood formulation and derive Expectation Maximization
update rules for the parameters.

For the E-step, we obtain a posteriori probability for the latent variables as

Rg(S,Z|f) o Pt(s)Pt(Z’S)PS(f’Z) (A2)

Y PS) Xeqany Pr(zls) Pu(fl2)

It should be understood that the variable z, when it occurs in the terms P;(z|s) and Ps(f|z),

belongs to the set {z;} of latent variables that corresponds to the particular source s.
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In the M-step, we maximize the expected complete data log-likelihood. Let A represent
the set of parameters of the model, i.e. A = {Pi(s), Ps(f|z), Pi(z|s)}. The expected log-

likelihood can be written as
L= E{§,2}|f;A IOgP(fT, Z, 5)7 (A3)

where f, Z and 5 represent the set of all observations of f, z and s in the draws that

generated the observed spectral vectors. The complete data likelihood can be written as

P(f,%,5) o [ [ P(f5 25, 55) = [ ] Pelsi) Pi(zs1s5) P, (£il29), (A4)

Jit Jit
where f;, z; and s; are the observed values of f, z and s respectively in the j-th draw. The

function £ can be written as (ignoring constant terms)

L = E{§,2}|f;AZlOgPt(fJ"Zjvsj)
gt

= ZE{sj,zj}\fj;AlogPt(fjaZjvsj)
gt

= D B 108 Pilsi) + ) gy, 2150 log Pilzls))
j7t j’t
+ZE{sj,zj}\fj;,\logst(ijZj)

jit
= ZZPt(s,z]fj)logPt(s)+22Pt(s,z\fj)logPt(z]s)

j’t 2,8 j,t zZ,8

+3 ) Pi(s, 2l f5) log Pu(f5]2).

It 28
In the above equation, the summation over draws j can be changed to a summation

over frequencies f by accounting for how many times f was observed, i.e. the f-th entry
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of the observed spectral vector Vftm. The expected log-likelihood can now be written as

ZZ’YVftZ Z P, (s, z|f)log P(s)

s ze{zs}
+ZZvatZ S° Pis.2lf) log Pi(2]s)
s z€{zs}
+ZZ’7VftZ > Py(s, z|f)log Pu(fl2). (A.5)
s ze{zs}

In order to take care of the normalization constraints, the above equation must be
augmented by appropriate Lagrange multipliers ¢, 77 and pj, yielding

- £+Z¢t(1—ZPt(s))+ZZT;(1— 3 Pt(z]s)>

z€{zs}

3 (1= nlR). (A.6)
P 7

Maximization of Q with respect to Pi(s), P;(z|s) and Ps(f|z) leads to the following set

of equations:

D oAVi Y Pils,zlf)+éiPi(s) = 0 (A7)
z€{zs}
> WViPis,z|f) + 7 Pi(zls) = 0 (A.8)
f
> AViPi(s, 2l f) + piPs(flz) = 0. (A.9)
t

After eliminating the Lagrange multipliers, the M-step equations are obtained as

Zze{zs} Zf Pt(s7 z‘f)vft
Zs Zze{zs} Zf Pt(sv Z|f)vft
o Pl 2l )V

Pi(z|s) = S oo S A2 Ve (A.10)

Pt(S) =

The above two equations, along with the E-step update of equation (A.2), form the update

equations for supervised separation. Notice that the basis vectors Ps(f|z), which are learned

13Since observed data is modeled as a histogram, entries should be integers. To account for this, the data
is weighted by an unknown scaling factor ~.
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in a separate training stage, are kept fixed and not updated.
In a semi-supervised framework where one also wants to estimate the basis vectors for

a subset of the sources, the update equation is obtained by solving equation (A.9) as

Ps(f‘z) _ Ztvftpt(‘g?z‘f)

- Zf > ViePi(s, 2|f) (A.11)
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Appendix B

Sparse Overcomplete Decomposition: Application to

Image Data

This appendix shows the applicability of the sparse latent variable decomposition framework
to analyze image data. Three applications — unsupervised feature extraction, supervised
image reconstruction and supervised classification —are presented.

The CBCL database' is used to demonstrate the first two applications; the USPS hand-
written digits database'® demonstrates the third application. These datasets are described
here briefly.

The CBCL database consists of 2429 frontal-view image faces, each image hand-aligned
in a 19 x 19 grid. Lee and Seung (1999) have used this dataset to demonstrate the utility
of NMF for extracting parts-based representations of data. Following their approach for
preprocessing, the grayscale intensities were linearly scaled so that the pixel mean and
standard deviation were equal to 0.25. The intensities were then clipped to the range [0, 1].
The USPS handwritten digits database consists of 8-bit grayscale 16 x 16 images of digits

“0” through “9.” There are 1100 examples of each class.
Feature Extraction

Lee and Seung (1999) applied NMF on the CBCL database and showed that the extracted
basis components had localized features that fit well with intuitive notions of parts of faces.
The latent variable model was applied to the database and Figure B-1(c) shows the results.

The components are qualitatively similar to those extracted from NMF.

"available from http://cbcl.mit.edu/software-datasets/FaceData2.html
Y5available from http;//www.cs.toronto.edu/~roweis/data.htm]
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However, the extracted bases are not entirely parts-based representations, as seen in the
figure: compared to holistic representations, parts-based representations should have lower
entropy. We ran experiments on the CBCL Database by applying sparsity on the basis
vectors. Results are shown in Figure B-1(a). Decreasing the entropy of basis vectors leads
to parts-like representations. Qualitatively similar results can be obtained by increasing
the entropy of mixture weights as shown in Figure B-1(d).

Instead of parts-like representations, one can obtain holistic representations by imposing
sparsity on the mixture weights, as shown by Figure B-1(e). Qualitatively similar results

can be obtained by increasing the entropy of basis vectors as shown in Figure B-1(b).

Image Reconstruction

The ability of the overcomplete bases to explain new data and predict the values of un-
observed components of the data was evaluated. Specifically, the approach was used to
reconstruct occluded portions of images. The CBCL database, consisting of 2429 frontal
view face images hand-aligned in 19 x 19 grids, was used for the experiment. Two thousand
images were randomly chosen as the training set. One hundred images from the remaining
429 were randomly chosen as the test set. To create occluded test images, 6 x 6 grids
were removed in ten random configurations for 10 test faces each, resulting in 100 occluded
images. Four sets of test images, where each set had one, two, three or four 6 x 6 patches
removed, were created. Figure B-2A illustrates the case where 4 patches were removed from
each face.

In a training stage, sets of K € {50,200, 500, 750, 1000} basis distributions were learned
from the training data. Sparsity was not used in the compact (K < F') case (50 and
200 bases), while sparsity was imposed (parameter — 0.1) on the mixture weights in the
overcomplete cases (500, 750 and 1000 basis vectors).

The procedure for estimating the occluded regions of a test image has two steps. In
the first step, the distribution underlying the image is estimated as a linear combination

of the basis distributions. This is obtained by iterations of equations (3.17) and (3.25)
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Figure B-1: Basis images extracted from the CBCL Database using the
latent variable model. Panel (c) shows 49 basis images extracted without
using sparsity. These are qualitatively similar to the basis vectors obtained
by NMF (not shown). Notice that they are not entirely parts-like representa-
tions. Panels (a) and (b) show results of varying « - the sparsity parameter
on the basis vectors. Panels (d) and (e) show the effects of varying 3 -
the sparsity parameter on mixture weights. Parts-like representations are
obtained when one imposes sparsity on the basis vectors (a) or increases
entropy of the mixture weights (d). Increasing entropy of basis vectors (b)
and decreasing entropy of the mixture weights (e) leads to holistic face-like
representations.
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A. Occluded Faces B. Reconstructions

Figure B-2: Application of latent variable decomposition for reconstructing
faces from occluded images (CBCL Database). (A). Example of a random
subset of 36 occluded test images. Four 6 x 6 patches were removed from
the images in several randomly chosen configurations (corresponding to the
rows). (B). Reconstructed faces from a sparse-overcomplete basis set of 1000
learned components (sparsity parameter = 0.1). (C). Original test images
are shown for comparison.
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to estimate P;(z) (the bases P(f|z), being already known, stay fixed), based only on the
pixels that are observed (i.e. we marginalize out the occluded pixels). The combination of
the bases P(f|z) and the estimated P;(z) give the overall distribution P.(f) for the image.
The occluded pixel values at any pixel f is estimated as the ezpected number of counts at
the pixels, given by P(f)(X preqry Vir)/ (X preqr,y Pi(f')) where Vi represents the value
of the image at the f' pixel and {F,} is the set of observed pixels. Figure B-2B shows
the reconstructed faces for the sparse-overcomplete case of 1000 basis vectors. Figure B-3
summarizes the results for all cases. Performance is measured by mean Signal-to-Noise-
Ratio (SNR), where SNR for an image was computed as the ratio of the sum of squared
pixel intensities of the original image to the sum of squared error between the original image

pixels and the reconstruction.
Handwritten Digit Classification

This experiment evaluates the specificity of the bases to the process represented by the
training data set for a simple example of handwritten digit classification. The USPS Hand-
written Digits database which has 1100 examples for each digit class, was used. One hundred
randomly chosen examples from each class were used as the test set. The remaining exam-
ples were used for training. During training, separate sets of basis distributions P*(f|z2)
were learned for each class, where k represents the index of the class. To classify any test
image v, the distribution underlying the image was estimated using the bases for each class
(by estimating the mixture weights P (z), keeping the bases fixed, as before). The “match”
of the bases to the test instance was indicated by the likelihood £F of the image computed
using PF(f) = Y., PE(f|2)PE(2) as £F = >_puslog P¥(f). Since the bases for the true
class of a given image are expected to best compose the image, the likelihood for the correct
class should be greatest. Hence, the image v was assigned to the class for which likelihood
was the highest.

Results are shown in Figure B-4. As shown in the figure, imposing sparsity improves

classification performance in almost all cases. Figure 4-7 shows four sets of basis distri-
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A. Reconstruction Experiment
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Figure B-3: Results of the face reconstruction experiment. Mean SNR of
the reconstructions is shown as a function of the number of basis vectors and
the test case (number of deleted patches, shown in the legend). Sparsity was
not used in the compact (K < F) case (50 and 200 bases), while sparsity
was imposed (parameter = 0.1) on the mixture weights in the overcomplete
cases (500, 750 and 1000 basis vectors). Notice that the sparse-overcomplete
codes consistently perform better than the compact codes.
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butions learned for the handwritten digit class “3” with different sparsity values on the
mixture weights. As the sparsity parameter is increased, bases tend to be holistic represen-
tations of the input histograms, consistent with improved classification performance. As
the representation of basis distributions get more holistic, the more unlike they become
when compared to bases of other classes. Thus, there is a smaller chance that the bases
of one class can compose an image in another class, thereby improving performance. Only
when the number of bases used is too small does performance decrease as sparsity increases

(see results for 25 basis components).

Percentage Error

| |
0.05 0.1
Soarsitv Parameter

Figure B-4: Results of the classification experiment. The legend shows
number of basis distributions used. Notice that imposing sparsity almost
always leads to better classification performance. In the case of 100 bases,
error rate comes down by almost 50% when a sparsity parameter of 0.3 is
imposed.
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