
'

&

$

%

Latent Variable Framework for Modeling andSeparating Single-Channel A
ousti
 Sour
esMadhusudana ShashankaDissertation submitted in partial ful�llmentof the requirements for the degree ofDo
tor of Philosophy

BOSTONUNIVERSITY



BOSTON UNIVERSITYGRADUATE SCHOOL OF ARTS AND SCIENCES
Dissertation

LATENT VARIABLE FRAMEWORK FOR MODELING ANDSEPARATING SINGLE-CHANNEL ACOUSTIC SOURCES
by

MADHUSUDANA SHASHANKAB.E. (Honors), Birla Institute of Te
hnology and S
ien
e, Pilani, India, 2003
Submitted in partial ful�llment of therequirements for the degree ofDo
tor of Philosophy2008




© Copyright byMADHUSUDANA SHASHANKA2007



Approved by
First Reader Barbara G. Shinn-Cunningham, Ph.D.Asso
iate Professor of Cognitive and Neural SystemsAsso
iate Professor of Biomedi
al EngineeringBoston UniversitySe
ond Reader Paris Smaragdis, Ph.D.Resear
h S
ientistMitsubishi Ele
tri
 Resear
h LaboratoriesThird Reader Frank Guenther, Ph.D.Asso
iate Professor of Cognitive and Neural SystemsBoston University



The �rst mark of intelligen
e, to be sure, is not to start things; the se
ond markof intelligen
e is to pursue to the end what you have started. Pan
hatantra

iv



A
knowledgmentsSeveral people have 
ontributed towards the 
ompletion of this work. First of all, I wouldlike to express immense gratitude to my thesis advisor, Prof. Barbara Shinn-Cunningham.She has been a wonderful guide and mentor giving me 
onstant support and en
ouragement.I thank her for helping me 
rystallize my a
ademi
 and professional goals and providing megreat freedom to explore and pursue my interests. She has a
tively helped me in developing
ollaborations and professional 
onta
ts for whi
h I will remain forever grateful.Se
ondly, this thesis would not have been possible without Dr. Bhiksha Raj and Dr.Paris Smaragdis at Mitsubishi Ele
tri
 Resear
h Labs. They provided te
hni
al supervisionfor this work and have helped me in every way, from ideas and theoreti
al dis
ussions tohelping me with parts of the implementation 
ode. And they have been great mentors, withgenerous advi
e on any topi
 I needed help with, espe
ially with my 
areer plans. I havelearned a great deal during my 
ollaboration with them. I 
annot thank them enough!I would like to thank the rest of my thesis 
ommittee members - Profs. Frank Guenther,Daniel Bullo
k and Eri
 S
hwartz - for reviewing this work and providing helpful feedba
k.I also want to extend my thanks to the fa
ulty of the Department of Cognitive andNeural Systems as well as fa
ulty in the Hearing Resear
h Center, espe
ially within the�binaural gang,� for 
reating a great environment 
ondu
ive for resear
h. Spe
ial thanks toall the sta� at CNS - Brian, Susanne, Cindy, Robin and espe
ially Carol - for helping menavigate through the bureau
ra
y of grad s
hool. Credit is due to many others but I refrainfrom listing all of them. Su�
e to say that I'm thankful to all my friends and well-wisherswithout whom my journey through grad-s
hool would have been mu
h harder.Finally, I dedi
ate this thesis to my parents, whose un
onditional support for all myendeavors is what made this thesis work possible. Thank you!v



LATENT VARIABLE FRAMEWORK FOR MODELING ANDSEPARATING SINGLE-CHANNEL ACOUSTIC SOURCES(Order No. )MADHUSUDANA SHASHANKABoston University Graduate S
hool of Arts and S
ien
es, 2008Major Professor: Barbara G. Shinn-Cunningham, Asso
iate Professor ofCognitive and Neural Systems and Biomedi
al EngineeringAbstra
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ene Analysis refers to the human ability to extra
t di�erent per
eptualobje
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ial systems has been ana
tive area of resear
h, related both to how one 
hara
terizes a
ousti
 sour
es and separatessour
es from mixtures. The fo
us of this thesis is to develop models and algorithms thatprovide a framework to address these questions. The framework 
omprises latent variablemodels that employ hidden variables to model unobservable quantities. Su
h models areappropriate for obtaining representations of data that make hidden stru
ture expli
it. Thiswork shows how one 
an utilize these ideas for the problem of sour
e separation usingsingle-
hannel audio signals.The proposed framework fo
uses on learning the time-frequen
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hara
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or hypothesized stru
ture about the data 
an be easily in
orporated by imposing appropri-ate prior distributions. Theoreti
al analysis of the proposed methods and algorithms forparameter inferen
e are presented.Appli
ations of the models to real-world problems are evaluated and dis
ussed. Thelatent 
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ousti
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1
Chapter 1Introdu
tion1.1 Introdu
tionThe study of human per
eption is a fas
inating subje
t. Mu
h resear
h has been devoted tounderstand this phenomenon for di�erent modalities su
h as vision, audition and olfa
tion.The domain of audition - the fo
us of this thesis, however, did not re
eive as mu
h attentionas vision until the last few de
ades. This is 
aptured in a remark by Metzger (1953)(abridged in English and quoted by Plomp, 2002):The a
hievements of the ear are indeed fabulous. While I am writing, myelder son rattles the �re rake in the stove, the infant babbles 
ontentedly inhis baby 
arriage, the 
hur
h 
lo
k strikes the hour, a 
ar stops in front of thehouse, next door one of the girls is pra
ti
ing on the piano, at the front doorher mother 
onverses with a messenger, and I 
an also hear the �ne s
raping ofthe point of the pen
il and my hand moving on the paper. In the vibrations ofair striking my ear, all these sounds are superimposed into a single extremely
omplex stream of pressure waves. Without doubt the a
hievements of the earare greater than those of the eye. Why do the psy
hologists, parti
ularly theGermans, sti
k so stubbornly to vision resear
h?The 
omment about German psy
hologists aside, this quote highlights the e�ortlessnesswith whi
h the human auditory system a

omplishes this feat of separating the input intodistin
t auditory obje
ts with the listener barely noti
ing the pro
ess. Cherry, in a 
lassi
study published the same year (Cherry, 1953), 
hristened this pro
ess as the Co
ktail PartyE�e
t referring to our ability to follow one speaker in the presen
e of others.



2The Co
ktail Party E�e
t is a very 
hallenging problem when viewed from a 
omputa-tional perspe
tive. An analogy due to Bregman (1990) illustrates the di�
ulties involved inthe pro
ess. Consider that you are on the edge of a lake and have dug two narrow 
hannels(a few feet long and a few in
hes wide, spa
ed a few feet apart) up from the side of thelake. If you stret
h a handker
hief a
ross either 
hannel, waves rea
hing the side of the lakewill travel up the 
hannel and 
ause the handker
hief to go into motion. By looking at thehandker
hief, you should be able to infer information about the a
tivities in the lake su
has the number, positions, dire
tions of travel and other attributes of various obje
ts on thelake (boats, swimmers, et
.). This seems like an impossible task but is a stri
t analogyto the problem fa
ed by the auditory system. The lake represents the air that surroundsus, the 
anals represent the ear 
anals and the handker
hief represents the ear drum. Webarely noti
e the 
omplexity of hearing but it be
omes obvious when presented this way.The problem has been 
onsidered before (Helmholtz, 1863) but sin
e Cherry's study,there has been a spurt of interest in understanding the 
o
ktail party e�e
t and repli
atingthis ability in ma
hines. See (Haykin and Chen, 2005; Bronkhorst, 2000) for reviews ofre
ent developments in the �eld. Haykin and Chen (2005) list three fundamental questionspertaining to the 
o
ktail party phenomenon:
• What is the 
o
ktail party problem?
• How does the brain solve it?
• Is it possible to build a ma
hine 
apable of solving it in a satisfa
tory manner?The resear
h work presented in this thesis addresses the last question. We are interestedin the question of whether it is possible to derive 
omputational algorithms that 
an solvethe problem.Let us 
onsider a mathemati
al formulation of the problem. Let x1(t) and x2(t) repre-sent the a
ousti
 signals arriving at the two ears at time instant t. Let there be N sour
es



3
s1(t), . . . , sN (t) where N ≥ 2. We 
an write the mixtures xk(t)

1 as
xk(t) =

N
∑

j=1

akjsj(t− δkj), k ∈ {1, 2}, j ∈ {1, . . . , N} (1.1)where parameters akj and δkj are the attenuation 
oe�
ients and the time delays asso-
iated with the path from the jth sour
e to the kth re
eiver (ear). The human auditorysystem analyzes the mixture signals xk(t) su
h that the resulting auditory per
eptual ob-je
ts often have a one-to-one 
orresponden
e with the a
tual sound sour
es sj(t) making upthe mixture. Most arti�
ial systems formulate the sour
e separation problem in a similarway. The problem is to estimate the sour
es sj(t) from observed signals x1(t) and x2(t).They 
an be 
ategorized into two groups � systems that work with multiple mi
rophone(multi-
hannel) re
ordings (e.g., Brandstein and Ward, 2001), and systems that work withsingle mi
rophone (single-
hannel) re
ordings (e.g., Roweis, 2001). Equation (1.1) repre-sents the multi-
hannel 
ase with two mi
rophones. In the 
ase of single-
hannel mixtures,the equation 
an be simpli�ed by subsuming the delays and attenuation 
oe�
ients withinthe sour
e signals (without loss of generality) and 
an be written as
x(t) =

N
∑

j=1

sj(t). (1.2)The fo
us of this thesis will be the 
ase of single-
hannel audio signals, exempli�ed by theformulation in the above equation.The main di�
ulty in solving the 
o
ktail party problem lies in the fa
t that the system isusually under-determined. In other words, there is no one unique way in whi
h sour
e signals
an be re
onstru
ted from the available information. For example, in the single-
hannel
ase one 
an 
hoose several distin
t sets of values for sj(t) su
h that the relation (1.2) issatis�ed. There is not enough �information� in the mixture signal to re
onstru
t the sour
esexa
tly. However, it is possible to estimate or obtain approximate solutions by utilizing someinformation about the problem. For example, if we know that we are trying to separate a1This is a simple formulation used for illustration. One has to 
onsider the frequen
y dependen
y of thedelay term to a

urately model the mixing pro
ess.



4male speaker from a female speaker, we 
ould use the fa
t that the female speaker usuallyhas a higher pit
h. To get a 
omputer a

omplish the separation task, we will have tolet the 
omputer �know� about this information. There are several methods resear
hershave used, but most are based on two underlying approa
hes. The �rst approa
h is tounderstand how the human auditory system solves this problem and utilize similar rulesand heuristi
s in the arti�
ial system. The se
ond approa
h is an engineering approa
hwhere the idea is to utilize probability and signal pro
essing theories to take advantage ofknown or hypothesized stru
ture/statisti
s of the sour
e signals and/or the mixing pro
essto estimate the sour
es.Resear
h on auditory per
eption fo
used on how humans solve this puzzle. This 
ul-minated with the seminal work of Bregman (1990). Bregman outlines many rules andheuristi
s that the auditory system uses to understand and organize sound, or to performauditory s
ene analysis (ASA). Sin
e then, there have been many attempts to build ma-
hines that are 
apable of aspe
ts of ASA, a dis
ipline known as Computational AuditoryS
ene Analysis (CASA; Brown and Cooke, 1994; Rosenthal and Okuno, 1998; Divenyi,2005). Many attempts have been made to build su
h systems (e.g., see work by Ver
oe andCumming, 1988; Duda et al., 1990; Mellinger, 1991; Cooke, 1991; Brown, 1992; Brown andCooke, 1994; Ellis, 1991, 1992, 1996; Grossberg et al., 2004; Roman, 2005, among others).These systems in
lude both monaural (single-
hannel) and binaural (two-
hannel) systems.Most of these CASA attempts 
an be 
hara
terized as des
riptions of 
omputational im-plementations of the views outlined by Bregman. They in
lude substantial knowledge ofthe psy
hophysi
al 
hara
teristi
s of the human auditory system and the heuristi
s used byit. As Smaragdis (2001) points out, this approa
h has inherent limitations, mainly due tothe di�
ulty in re
on
iling subje
tive and fuzzy 
on
epts used by Bregman su
h as �sim-ilarity�, �proximity� and �
ontinuity� and the stri
tly deterministi
 platform of 
omputerimplementations.On the other hand, resear
hers in the statisti
al signal pro
essing 
ommunity have ap-proa
hed a 
omputationally equivalent problem from a di�erent perspe
tive. This problem,



5usually termed as Blind Sour
e Separation (BSS; Choi et al., 2005), involves �nding the setof sour
e signals that 
ombine to form the observed mixture of signals in a blind (i.e. un-supervised) manner. There are two 
ategories � beamforming te
hniques and IndependentComponent Analysis (ICA). Beamforming (Brandstein and Ward, 2001) utilizes informa-tion about the dire
tions of sour
es, di�eren
es in the level and times of arrival at di�erentsensors, and other sensor-
on�guration based information to estimate the sour
es. ICA(Hyvarinen, 1999) uses statisti
al information and assumptions about the nature of sour
esignals to estimate them. Spe
i�
ally, it assumes that the sour
e signals are generated bystatisti
ally independent random pro
esses. Both of these approa
hes, however, require atleast two di�erent mixture signals, making them unsuitable for the single-
hannel 
ase.We take a ma
hine learning approa
h and formulate the problem in a supervised setting.We assume that one or more of the sour
es present in the mixture are �known.� In otherwords, sample waveforms of the known sour
es (re
orded in the absen
e of other interferinga
ousti
 obje
ts) are available for analysis before we ta
kle the problem of separating themixture. The idea is to analyze the available �training data� to extra
t 
hara
teristi
sunique to ea
h known sour
e and then utilize the learned information for appli
ations su
has sour
e separation. The following se
tion provides an overview of the 
ontributions ofthis thesis.1.2 OverviewThis thesis explores modeling single-
hannel a
ousti
 signals. The fo
us is on providing aprobabilisti
 framework to model the sounds so that one 
an either extra
t the underlyingstru
ture and understand a parti
ular 
lass of sounds (e.g. analysis of polyphoni
 musi
) oruse these models for appli
ations su
h as sour
e separation. The proposed work 
onsidersthe problem from a stri
tly 
omputational perspe
tive and does not take into a

ounthow the human auditory system solves the problem. The aim is not simply to build asystem 
apable of sour
e separation but to provide a 
omputational framework groundedin theoreti
al prin
iples with whi
h one 
an attempt to solve su
h problems. The models



6we present use a time-frequen
y representation of audio signals. This kind of representationallows us to view the sound in terms of energy present at every frequen
y 
omponent andtime frame.There are two main themes in this work. First, the fo
us is the statisti
al modelthat underlies the 
omputational framework. As mentioned above, sounds rarely o

urin isolation. Even for a given sour
e, the sound at any instant is usually 
omposed of manydi�erent underlying 
omponents or building blo
ks. For example, a guitar 
hord 
ontainsmany notes, whi
h 
an be thought of as the underlying 
omponents. This implies that
• energy in a parti
ular time-frequen
y bin for a signal has 
ontributions from allsour
es/
omponents that 
ombine to 
ompose the signal.We would like to learn these underlying 
omponents or building blo
ks using the developedprobabilisti
 framework. We use models that employ latent variables, whi
h allows us toexpli
itly express the energy in a time-frequen
y bin as arising from many 
omponents.The latent variables 
orrespond to the underlying 
omponents that are unobservable. Weuse statisti
al te
hniques to estimate the parameters of the model, and thus �learn� the
omponents from training data. We present theoreti
al analysis and provide experimentalresults that demonstrate appli
ations.The se
ond theme of this thesis is to investigate sparse 
oding. We 
onsider modelsin whi
h the aim is to represent observed data as an additive mixture of a set of 
anon-i
al 
omponents. In this 
ontext, sparse 
oding refers to a s
heme in whi
h only a smallnumber of 
omponents are required to represent any parti
ular instan
e of data. In an over-
omplete 
ode, there are more 
omponents than the dimensionality of the data. A sparseover
omplete 
ode is one that 
ombines notions of both sparsity and over
ompleteness. Inthe 
ontext of modeling a
ousti
 signals, this 
on
ept has signi�
ant impli
ations. A given
lass of sounds that we want to analyze 
an have an arbitrary number of building blo
ks.However, mathemati
s 
onstrains us so that the number of 
omponents extra
ted is equalto or less than the dimensionality of the time-frequen
y representation (i.e., the number offrequen
y bins). Extra
ting more 
omponents will lead to trivial solutions or indetermi-



7na
y. But the number of underlying 
omponents (ground truth) does not depend on therepresentation. A sparse over
omplete 
ode allows us to get around the problem - we 
anhave a large set of 
omponents to explain the entire signal; however, any parti
ular instantwill have 
ontributions from only a few 
omponents. The proposed work shows how this
omputational prin
iple 
an be utilized in a probabilisti
 framework. Again, we presentthe theory and show experimental results that demonstrate the e�
a
y of the proposedmethods.The thesis is organized as follows. Chapter 2 provides ba
kground about modelingsingle-
hannel audio, reviewing time-frequen
y representations of sound and set the stagefor later 
hapters. Previous approa
hes that have been proposed for single-
hannel sour
eseparation are then reviewed. Chapters 3 and 4 represent the 
ore part of this thesisresear
h. Chapter 3 presents the latent variable framework, while Chapter 4 extends theframework to in
orporate the 
on
ept of sparse 
oding. We present 
on
lusions and avenuesfor future work in Chapter 5.
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Chapter 2Modeling Time-Frequen
y Stru
ture from AudioSound is the vo
abulary of nature. Pierre S
hae�er2.1 Introdu
tionThis 
hapter presents ba
kground about modeling stru
ture from a
ousti
 signals. Time-frequen
y representations of sounds are brie�y reviewed and 
onventions used in the re-maining 
hapters are de�ned.2.2 RepresentationSound 
onsists of pressure variations propagating through a medium su
h as air. The
ommon digital representation of an a
ousti
 signal is the sampled waveform, where ea
hsample represents the sound pressure level at a parti
ular time instant. Figure 2·1 showsthe time-domain pressure signal of a spee
h sound.Real-world sounds are time-varying, and all of their meaning is en
oded in these vari-ations in frequen
y 
ontent over time. A time-domain waveform does not represent theinformation present in a sound in an expli
it way. We 
an instead utilize a time-frequen
yrepresentation, whi
h expli
itly represents the energy in every time-frequen
y bin. Thetime dimension 
orresponds to a sequen
e of time-frames (su

essive �xed-width snippetsof the waveform, possibly windowed and overlapping) representing ea
h frequen
y dimen-sion, 
orresponding to the output of one of a bank of �lters. This is 
onsistent with auditory
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Figure 2·1: Time representation of a female spee
h utteran
e �Don't askme to 
arry an oily rag like that.�physiology. The �rst stage of analyzing sounds in biologi
al systems is to de
ompose thesignal into multiple frequen
y bands through an intri
ate me
hano-neural intera
tion inthe 
o
hlea. As a result of this pro
essing, the initial neural representation of sound is wellapproximated as a pro
ess that takes an in
oming a
ousti
 signal and de
omposes it intoan ongoing time-frequen
y representation.A useful method to obtain a time-frequen
y representation is the Short Time FourierTransform (STFT), introdu
ed by Gabor (1946). The in
oming time signal is multipliedby a time windowing fun
tion that is non-zero for a short period of time. The Fouriertransform of the output of the window is taken as the window slides along time axis. Thisresults in a two dimensional time-frequen
y representation of the signal that shows howfrequen
y 
ontent 
hanges with time. Results are often displayed as spe
trograms thatshow energy (using 
olor or grays
ale) as a fun
tion of time and frequen
y. Figure 2·2shows an example spe
trogram of the waveform shown in Figure 2·12. In the presen
e of2The STFT of a time-signal produ
es a 
omplex number at every time-frequen
y bin. We only 
onsiderthe magnitude of the STFT to 
reate a spe
trogram. Unless otherwise stated, spe
trograms representonly the magnitude of the STFT. Also, all �gures display the logarithm of the magnitude spe
trogram forenhan
ed 
ontrast between regions of high and low energy.



10multiple sounds, energy is 
ombined from all sour
es at every time-frequen
y 
omponent inthe two-dimensional representation of the sound mixture.The STFT is just one of the many ways of obtaining a time-frequen
y representation.The STFT 
an be thought of as a representation of the output of a bank of �lters that sli
esthe spe
trum into equal width (in Hz), non-overlapping sli
es. Instead, one 
an 
hoose adi�erent �lterbank to obtain the frequen
y bin indi
es. Examples in
lude the 
onstant-Q transform (Brown, 1991) or �lter banks based on psy
hoa
ousti
 measurements su
has the gammatone (Patterson-Holdsworth) (Patterson et al., 1995) and the gamma-
hirp�lter banks (Irino and Patterson, 1997). The framework we will propose will be appli
ableon any time-frequen
y representation as long as the entries in all time-frequen
y bins arenon-negative and represent an �energy-like� quantity that 
an be approximated to 
ombineadditively in the 
ase of sound mixtures. This thesis only 
onsiders the magnitude of theSTFT to generate the time-frequen
y representation that will be 
onsidered. Also, the termspe
tral ve
tor will be used to denote a parti
ular analysis frame (
orresponding to a timebin) of su
h a spe
trogram.

Time Index
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x

Figure 2·2: Time-frequen
y representation of the waveform of Figure 2·1.The �gure plots the log-magnitude of the short-time Fourier transform ofthe signal.



112.3 Modeling Time-Frequen
y Stru
tureThe work proposed in this thesis fo
uses on learning time-frequen
y stru
ture in a purelydata-driven fashion from audio data. This se
tion reviews other methods that have beenproposed for audio sour
e separation.2.3.1 CASA MethodsThe �eld of Computational Auditory S
ene Analysis (CASA) aims to build sound separationsystems that are based on known prin
iples of human per
eption (Brown and Wang, 2005).Bregman (1990) outlined various rules and heuristi
s used by the auditory system to performauditory s
ene analysis. Sin
e his seminal work, the �eld of CASA has emerged withthe goal of building arti�
ial systems that implement the prin
iples he outlined. Mostsystems, motivated by psy
hophysi
s and physiology to a lesser extent, are binaural systems;however, monaural systems have also been proposed.An important 
on
ept in CASA is that of a time-frequen
y mask. Consider the prob-lem of separating out a target signal from a mixture. The idea is to assign a higher weightto those time-frequeny regions of the mixture in whi
h the target is dominant (has moreenergy) and low weight to the rest of the spe
trogram. The mask multiplies the mixturespe
trogram and the time-domain target signal is re
onstru
ted from the weighted time-frequen
y representation. Weintraub (1985) was the �rst to use this approa
h and manyresear
hers have adopted it sin
e then (Brown, 1992; Brown and Cooke, 1994; Roweis,2001). The values of the time-frequen
y mask 
an be binary or real-valued. In the 
ase ofa binary mask, one only retains those time-frequen
y regions of the mixture where the tar-get is dominant, and dis
ards regions in whi
h the target is weaker than the interferen
e.Spe
i�
ally, the binary mask has a value of 1 where the target is dominant and 0 else-where. The intuition is that the dominant sour
e masks energy of the weaker sour
e in anyparti
ular time-frequen
y bin, and based on the spe
trotemporal sparsity of many naturalsignals, a re
onstru
tion based on the time-frequen
y bins in whi
h the target dominatesis su�
ient for relatively a

urate re
onstru
tion. The ideal binary mask, a binary mask
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Target

Interference

Mixture

Ideal Binary Mask

Masked Mixture

Figure 2·3: Illustration of the ideal binary mask. Target is a femaleutteran
e �Don't ask me to 
arry an oily rag like that� and interferen
e isa male utteran
e �She had your dark suit and greasy wash water all year.�In the Ideal Binary Mask panel, bla
k pixels indi
ate 1 (allow) and whitepixels indi
ate 0 (dis
ard). The masked mixture is shown whi
h 
orrespondsto the re
onstru
ted target.



13one would obtain if the individual sour
e signals of the mixture were available a priori, hasbeen proposed as the 
omputational goal of CASA (Wang, 2005). Figure 2·3 illustrates the
on
ept of an ideal binary mask.The aim of CASA systems is to identify these T-F regions in whi
h the desired targetis dominant. The systems utilize various 
ues, in
luding harmoni
ity of the sour
es, funda-mental frequen
y (F0) 
ontinuity, 
ommon onsets/o�sets of energy a
ross frequen
y bands,smooth transition of energy along time, and so on. Some methods use �mid-level� represen-tations to expli
itly en
ode information about su
h 
ues. For example, Cooke (1991) uses a�syn
hrony strand� representation that makes 
ontinuity in time-frequen
y expli
it. Brownand Cooke (1994) extend the approa
h to 
reate expli
it TF �maps� of onset/o�set a
tiv-ity, frequen
y transition, and periodi
ity. For monaural systems, the important 
ue is thefundamental frequen
y of sour
es. Several systems utilize this 
ue by 
onstru
ting �
orrelo-gram� representations (Weintraub, 1985; Slaney and Lyon, 1990). Unlike these data-drivensystems, approa
hes have also been proposed that are top-down and more generi
 in nature(Ellis, 1996; Godsmark and Brown, 1999). See Brown and Wang (2005) for a review ofCASA approa
hes for sound separation.An important assumption in CASA approa
hes is that the energy of a single utter-an
e tends to be sparsely distributed, the impli
ation being that di�erent sour
es aredisjoint in their spe
tro-temporal 
ontent (Yilmaz and Ri
kard, 2004). Indeed, this ap-proa
h fails when mixtures are 
omposed of sounds that are not spe
tro-temporally sparse.The approa
h 
an result in audible distortions when the 
omposite signals overlap intime/frequen
y. In a study 
omparing CASA and ICA approa
hes, van der Kouwe et al.(2001) found that CASA performed well only on mixtures that exhibited well de�ned re-gions in the TF plane 
orresponding to the various sound sour
es. The performan
e forspee
h separation was best in 
onditions in whi
h the interferer was tonal or lo
ally nar-rowband. When there was substantial spe
tral overlap between target and interferen
e,performan
e was poor. Despite the limitations, the idea of time-frequen
y masks and idealbinary masks 
ontinue to be dominant in CASA resear
h.



142.3.2 Basis De
omposition MethodsWe now brie�y review a di�erent 
lass of approa
hes that we 
all basis de
omposition meth-ods. The main idea is that an observed data ve
tor 
an be expressed as a linear 
ombinationof a set of �basis 
omponents.� We are interested in methods that analyze time-frequen
yrepresentations of audio to extra
t stru
ture that 
an be used for appli
ations like sour
eseparation in later stages. In other words, we fo
us on basis de
omposition methods thatanalyze time-frequen
y representations as linear 
ombinations of sour
e-dependent 
ompo-nents3. The intuition is that every sour
e exhibits 
hara
teristi
 stru
ture a
ross frequen
ythat 
an be 
aptured by a �nite set of 
omponents. Mathemati
ally, the model 
an bewritten as
vt =

K
∑

k=1

hktwk, t = {1, . . . , T}, (2.1)where vt is the t-th frame of the observed spe
trogram, K is the number of 
omponents, wkis the k-th 
omponent ve
tor and hkt is the gain of the k-th 
omponent in the t-th frame.Writing the spe
trogram as F × T matrix V, basis 
omponents as F ×K matrix the W([w1, . . . ,wK ]), and the gains as K ×T matrix H, the above formulation 
an be written as
V = WH. (2.2)Consider a simplisti
 example that illustrates this idea. The bottom-right panel ofFigure 2·4 shows the spe
trogram of a sound signal 
orresponding to two tones 
oming onand o� intermittently. At various times during the signal, there is either silen
e, or oneof the two tones is on, or both tones are on simultaneously. And yet, the entire signal
an be represented as a linear 
ombination of just two 
omponents, 
orresponding to thetones. The proportions with whi
h the 
omponents 
ombine indi
ates the extent to whi
hthey are present in the signal in ea
h time frame. This is illustrated in the left and toppanels of the �gure. In this example, the two 
omponents have non-overlapping frequen
y3Basis de
omposition 
an also refer to sour
e-independent time domain de
ompositions su
h as Fourierand Wavelet bases. The term is used in a restri
ted sense here. We should also point out that there aretime-domain methods that extra
t sour
e-dependent 
omponents (e.g., Jang and Lee, 2003) for monauralsour
e separation but they will not be 
onsidered here.
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Figure 2·4: Illustration of Basis De
omposition. The bottom-right panelrepresents a mixture of two intermittent tones. The left panel indi
ates thetwo �basis 
omponents� 
orresponding to the frequen
ies of the two tones andthe top-panel shows their time pro�les. Non-negative Matrix Fa
torizationwas used to derive the spe
tral and temporal pro�les (after Smaragdis, 2004).
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ontent but this need not be true in general. In the 
ontext of sour
e separation, the idea isthat one 
ould �learn� these 
omponents for every sour
e present in a mixture signal (from
lean training data) and use this information for sour
e separation. If the 
omponents
hara
terize the sour
es well, the separation quality should be high.Several methods 
an be used for estimating the 
omponents to be used as bases. Theformulation of equation (2.2) points to matrix fa
torization methods su
h as Prin
ipalComponent Analysis (PCA) and Independent Component Analysis (ICA)4. The troublewith su
h standard methods is that the resulting matri
es 
orresponding to the 
omponentsand gains are real valued with both positive and negative entries. Therefore, 
omponentsadd and 
an 
an
el ea
h other to approximate the input. For example, bases 
omponentsextra
ted by PCA, shown in Figure 2·5 
ontain both positive and negative values, and theresulting approximation of the input 
an 
ontain negative entries. However, the entries ofspe
trogram represent energies and thus should have only positive entries.

Figure 2·5: Two PCA basis 
omponents extra
ted from the spe
trogramshown in Figure 2·4. Noti
e that the 
omponents have positive and negativevalues, whi
h is hard to interpret in the 
ontext of spe
trograms (energy
annot be negative). The ordinate represents frequen
y.Non-negative Matrix Fa
torization (NMF; see se
tion 3.3.4) was introdu
ed by Lee and4ICA uses a di�erent formulation in whi
h ea
h row of the input V 
orresponds to time samples of themixture signal from one sensor, instead of being a frequen
y index in a TF representation. ICA workswell only when there are more sensors than sour
es. However, it has been extended for monaural soundseparation re
ently as Independent Subspa
e Analysis, (see Casey and Westner, 2000)



17Seung (1999) to expli
itly enfor
e non-negativity 
onstraints on all the entries of fa
toredmatri
es. Resear
hers have sin
e used this method to model a
ousti
 sour
es and for sour
eseparation with good results (Smaragdis and Brown, 2003; Smaragdis, 2004; Virtanen,2007). Re
ently, there has been a lot of interest in this approa
h and there have been severalstudies regarding its appli
ability in modeling a
ousti
 signals (Virtanen, 2006; O'Grady,2007). Despite its wide use, a weakness of NMF is the la
k of theoreti
al motivation. Mu
hof its appeal 
omes from its empiri
al su

ess in learning meaningful 
omponents (Hoyer,2004, pp. 1459), but there is no theoreti
al justi�
ation for why it works in separation(Virtanen, 2006, pp. 28). However, NMF based approa
hes have been widely used in variousma
hine learning appli
ations, in
luding audio sour
e separation, and resear
h interest inthis �eld 
ontinues to grow.2.4 Spe
trograms as Histograms - A Generative ModelThe framework proposed in this thesis is based on a di�erent approa
h to modeling spe
-trograms. We follow the basis de
omposition approa
h and wish to learn 
hara
teristi

omponents for a
ousti
 sour
es that 
apture distin
tive frequen
y stru
tures. This is sim-ilar to NMF but it over
omes a signi�
ant limitation of NMF - the la
k of a statisti
algenerative model. We hypothesize a statisti
al model for how ea
h spe
tral ve
tor is gener-ated and the framework attempts to 
hara
terize the underlying generative random pro
ess.In this se
tion, we des
ribe this generative model and set the stage for the rest of the thesis.The value of a parti
ular time-frequen
y bin in a spe
trogram represents the amountof a
ousti
 energy in the signal at the parti
ular time frame and frequen
y band. We 
anthus 
onsider this value as a 
ount � a value whi
h signi�es the number of �energy quanta�observed at that parti
ular bin. Consider the hypothesized pro
ess whi
h generates aspe
tral ve
tor. It is generated as a result of multiple draws from a random pro
ess. Agiven draw 
orresponds to an observation of one �unit energy quantum� at one of the Ffrequen
y bins. The pro
ess is repeated multiple times and the number of energy quantaobserved in ea
h bin is noted. This histogram of results 
orresponds to the observed spe
tral



18ve
tor. The total energy of the spe
tral ve
tor 
orresponds to the total number of drawsthat generated it. Figure 2·6 illustrates the approa
h.
F
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Figure 2·6: Illustration of the �spe
trogram as a histogram� perspe
tive.Ea
h spe
tral ve
tor is thought of as a histogram of multiple draws from anunderlying random pro
ess.In this approa
h, we 
an model a mixture spe
trogram as the histogram of draws frommultiple random pro
esses, one ea
h for every sour
e present in the mixture. We show thatthe perspe
tive allows us to model and re
onstru
t entire spe
trograms for every underlyingsour
e rather than building partial spe
tral des
riptions (as is done in the binary maskapproa
h).Before we pro
eed, we point out the appli
ability of the framework (to be proposed infuture se
tions) to time-frequen
y representations that are expli
itly modeled as probabilitydistributions. For example, Loughlin et al. (1994) present a method to 
onstru
t a jointtime-frequen
y distribution to represent a
ousti
 signals. For su
h representations, theframework analyzes the given input instead of modeling it as a histogram.
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Chapter 3Latent Variable De
omposition: A Probabilisti
FrameworkAlthough to penetrate into the intimate mysteries of nature and then
e tolearn the true 
auses of phenomena is not allowed to us, nevertheless it 
an hap-pen that a 
ertain �
tive hypothesis may su�
e for explaining many phenomena.Leonhard Euler, 17483.1 Introdu
tionThis 
hapter introdu
es the probabilisti
 framework that forms the basis of this thesis.As mentioned previously, spe
trograms are modeled as histograms of multiple draws offrequen
y bin indi
es from an underlying random pro
ess. This allows one to develop aframework grounded in sound statisti
al prin
iples. The 
ore idea is that the random pro-
ess that generates a parti
ular spe
tral ve
tor is modeled by a set of latent or hiddendistributions that are 
hara
teristi
 of the sour
e. These latent distributions 
ombine indi�erent proportions to generate di�erent spe
tral ve
tors for a given sour
e. The assump-tion is that these latent distributions 
apture spe
tral stru
ture that is 
hara
teristi
 tothe sour
e and not to the individual spe
tral ve
tors. With this framework, one 
an utilizelearned latent distributions from a set of sour
es for appli
ations su
h as sour
e separationand denoising. The fa
t that the framework is based on a probabilisti
 foundation allowsus to use statisti
al te
hniques for parameter estimation. It also makes the framework moreamenable to prin
ipled extensions and improvements, one of whi
h will be 
onsidered in



20the next 
hapter.The 
hapter is organized as follows. Se
tion 3.2 presents ba
kground about latent vari-ables and latent 
lass models. Latent variables and the 
on
ept of 
onditional independen
e,whi
h underlie the proposed framework, are dis
ussed. The framework is then proposedin Se
tion 3.3, along with the theory and derivation of inferen
e algorithms. A geometri
interpretation of the model is presented in Se
tion 3.4 that provides insight about the work-ings of the framework. The theory is presented with referen
e to generi
 feature 
ounts. Theframework is general and 
an be applied to di�erent kinds of data, in
luding images andword-
ounts data. Se
tion 3.5 shows how the framework 
an be used for sour
e separationand other a
ousti
 pro
essing tasks. The 
hapter ends with dis
ussion and 
on
lusions inSe
tion 3.6.3.2 Ba
kground: Latent Variables and Latent Class ModelsLatent variables are widely used to understand and explain observed data in the areas ofso
ial and behavioral s
ien
es and psy
hology. Consider the following senten
e, used asan example by Borsboom et al. (2003): �Einstein would not have been able to 
ome upwith his e = mc2 had he not possessed su
h an extraordinary intelligen
e.� This senten
erelates observable behavior (Einstein's writing e = mc2) to an unobservable attribute (hisextraordinary intelligen
e), and it does so by assigning to the unobservable attribute a 
ausalrole in bringing about Einstein's behavior. In psy
hology, 
onstru
ts like this often play animportant role to s
ienti�
 theses. Similar situations arise in so
ial s
ien
e when s
ientistswish to understand attitudes of a population of individuals by observing their responses ina questionnaire. Problems like these 
an be approa
hed by modeling the observed a
tionsas manifest variables and the hidden attitudes as latent variables.One 
an have a variety of models that employ latent variables. A simple example is asfollows:
x = u + δ, (3.1)where x is the manifest variable, u is the latent variable and δ represents measurement



21error. The latent variable models that are of relevan
e to this work are more 
omplex andare referred to as Latent Class Models.3.2.1 Latent Class ModelsA

ording to Borsboom et al. (2003), the 
on
eptual framework of latent variable analysis asdis
ussed in this se
tion 
an be tra
ed ba
k to the work of Spearman (1904), who developedfa
tor-analyti
 models for 
ontinuous variables in the 
ontext of intelligen
e testing. Thebasi
 statisti
al idea of latent variable analysis is simple. If a latent variable underlies anumber of observed variables, then the observed variables 
onditioned on that latent variableshould be statisti
ally independent. This is 
alled the prin
iple of lo
al independen
e. Theintuition behind this idea is that the 
ommon 
ause of a phenomenon should fa
tor outobserved 
orrelations. Suppes and Zanotti (1981) 
all this prin
iple the 
ommon 
ause
riterion. For example, if it was found that barometri
 pressure and temperature wereboth dropping at the same time, one would look for a 
ommon dynami
al 
ause withinthe theory of meteorology. Similarly, if one found that heada
hes and fever were positively
orrelated, he/she would look for a 
ommon 
ause instead of 
onsidering one as a 
auseof the other. Following Spearman's work, this paradigm developed in the 20th 
entury.Models that assume the prin
iple of lo
al independen
e and employ dis
rete variables forboth latent and observed variables are known as latent 
lass models (Green Jr., 1952;Lazarsfeld and Henry, 1968; Goodman, 1974).To illustrate the model, 
onsider an example used by Lazarsfeld and Henry (1968). Letus suppose that a survey was 
ondu
ted about the readership of two magazines x1 and x2,and 1000 people responded. The results of the survey are shown in Table 3.1.Read x1 No x1 TotalsRead x2 260 240 500No x2 140 360 500Totals 400 600 1000Table 3.1: Illustrative example for latent 
lass models - readership of mag-azines x1 and x2



22From the table, it is easy to see that there is some asso
iation between the readershipsof magazines x1 and x2. A simple indi
ator is the fa
t that readers of x1 tend to read x2(260) more often than non-readers of x1 (240). The magazines have some 
ommon appealto to readers, though they are quite di�erent in the readership.Now, suppose that additional data on the 1000 respondents are available that indi
atewhether ea
h individual has obtained higher edu
ation or not. The data 
an then be dividedinto two groups as shown in Table 3.2.High-Ed Low-EdRead x1 No x1 Totals Read x1 No x1 TotalsRead x2 240 60 300 20 80 100No x2 160 40 200 80 320 400Totals 400 100 500 100 400 500Table 3.2: Readership of x1 and x2, given edu
ationIn the subgroups 
orresponding to di�erent levels of edu
ation, there is no asso
iationbetween the readership. For example, among the High-Ed respondents, 4/5 read magazine
x1 irrespe
tive of whether they read x2 (240/300 = 4/5 = 160/200). Sin
e there is noasso
iation between x1 and x2 when edu
ation is 
onsidered, one 
an say that edu
ationexplains the observed asso
iation between the magazines. The observed relation between
x1 and x2 was due to their 
ommon appeal to higher edu
ated people.Now, the same data 
an be viewed in terms of probabilities by normalizing all theentries. For example, the probability that a person would read both x1 and x2 is equal to
260/1000 = 0.26. Let us represent the readership of magazines by random variables x1 and
x2 whi
h take two possible values 0 and 1. Let a value 1 imply that the person reads themagazine while a value of 0 implies that he/she does not. Similarly, let us represent thestatus of edu
ation by a di
hotomous random variable z, where a value of 1 implies High-Ed and a value of 0 implies Low-Ed. Then, tables 3.1 and 3.2 
an be written in terms ofprobabilities as shown in tables 3.3 and 3.4 respe
tively. The observed data 
an be viewedas histograms of repeated draws from these underlying probability distributions.
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x1 = 1 x1 = 0

x2 = 1 P (x1, x2) = 0.26 P (x1, x2) = 0.24 P (x2) = 0.5
x2 = 0 P (x1, x2) = 0.14 P (x1, x2) = 0.36 P (x2) = 0.5

P (x1) = 0.4 P (x1) = 0.6 1Table 3.3: Illustrative example for latent 
lass models - probabilities ofrandom variables x1 and x2.
P (z = 1) = 0.5

x1 = 1 x1 = 0

x2 = 1 P (x1, x2|z) = 0.48 P (x1, x2|z) = 0.12 P (x2|z) = 0.6
x2 = 0 P (x1, x2|z) = 0.32 P (x1, x2|z) = 0.08 P (x2|z) = 0.4

P (x1|z) = 0.8 P (x1|z) = 0.2 1

P (z = 0) = 0.5
x1 = 1 x1 = 0

x2 = 1 P (x1, x2|z) = 0.04 P (x1, x2|z) = 0.16 P (x2|z) = 0.2
x2 = 0 P (x1, x2|z) = 0.16 P (x1, x2|z) = 0.64 P (x2|z) = 0.8

P (x1|z) = 0.2 P (x1|z) = 0.8 1Table 3.4: Probabilities of random variables x1 and x2, given variable z.Table 3.3 lists both the joint probabilities P (x1, x2) and marginal probabilities P (x1),
P (x2), where the marginals are given by

P (x1) = P (x1, x2 = 0) + P (x1, x2 = 1),

P (x2) = P (x1 = 0, x2) + P (x1 = 1, x2).If we a

ount for the random variable z 
orresponding to the edu
ation attribute that�explains� the data (as shown in Table 3.4), we also observe the following relation
P (x1, x2|z) = P (x1|z)× P (x2|z). (3.2)The above relation implies that the random variables x1 and x2 are statisti
ally indepen-dent if they are 
onditioned on random variable z. This relation enabled us to say that the
on
ept 
orresponding to the variable z (edu
ation) explained the observed asso
iations.



24The observed joined probability 
an be written as
P (x1, x2) =

∑

z∈{0,1}

P (z)P (x1|z)P (x2|z). (3.3)Equations (3.2) and (3.3), whi
h 
orrespond to the prin
iple of lo
al independen
e, de-�ne a latent 
lass model. But the underlying variable z whi
h renders the observed variablesindependent 
orresponds to a hidden or latent 
on
ept that is not dire
tly observable, unlikethe �edu
ation� attribute used in this example. Data about su
h additional attributes arerarely available and even when available, are not su�
ient to explain the observed asso
ia-tions. The intuition behind latent 
lass models is to explain the asso
iations by invoking ahidden variable. In the general 
ase, we 
an have multiple variables (say K) x1, x2, . . . , xKand ea
h variable, instead of taking two values, 
ould take multiple values. In its generalform, latent 
lass model expresses a K-dimensional distribution as a mixture where ea
h
omponent of the mixture is a produ
t of one-dimensional marginal distributions. Mathe-mati
ally, we 
an write it as
P (x) =

∑

z

P (z)
K
∏

j=1

P (xj |z), (3.4)where P (x) is a K-dimensional distribution of the random variable x = x1, x2, . . . , xK .Mixture 
omponents are indexed by the latent variable z and P (xj |z) are one-dimensionalmarginal distributions. Given 
ounts of multiple draws from P (x), the aim is to estimatethe parameters of the model P (z) and P (xj |z), j ∈ {1, 2, . . . , K}.3.2.2 Latent Class Models as Matrix De
ompositionConsider a latent 
lass model in two variables x1 and x2. Let x1 and x2 be multinomialvariables, where x1 
an take one out of a set of M values in a given draw and x2 
an takeone out of a set of N values. A draw 
an be thought of as rolling di
e two with M and
N fa
es, respe
tively. Observed data 
an be represented as a matrix V, where the mn-thelement Vmn represents the number of draws in whi
h x1 took a value of m and x2 took



25a value of n. Let P represent the matrix of normalized values of V. In other words, Prepresents the underlying distribution P (x), where Pmn = P (x1 = m, x2 = n). Consider alatent variable z that 
an take values from the set {1, 2, . . . , K}.The latent 
lass model expresses the joint distribution of x1 and x2 as
P (x1, x2) =

∑

z∈{1,...,K}

P (z)P (x1|z)P (x2|z). (3.5)We 
an view the above relation from the perspe
tive of linear algebra. Let us represent theparameters P (x1|z), P (x2|z) and P (z) as entries of matri
es W, H and S as follows:
• W is a M ×K matrix, where the entry in m-th row and k-th 
olumn 
orresponds tothe probability P (x1 = m|z = k).
• H is a K ×N matrix, where the entry in k-th row and n-th 
olumn 
orresponds tothe probability P (x2 = n|z = k).
• S is a K×K diagonal matrix, where the k-th entry 
orresponds to the mixture weight

P (z = k).With this matrix notation, we 
an write the relation of latent 
lass model as follows:
P (x1, x2) =

∑

z∈{1,...,K}

P (z)P (x1|z)P (x2|z)

Px1x2
=

K
∑

z=1

Wx1zSzzHzx2

P = WSH. (3.6)Figure 3·1 illustrates the latent 
lass model 
omputation using a s
hemati
. Thus, using alatent 
lass model is equivalent to performing a matrix de
omposition.With this ba
kground, we are ready to introdu
e the general framework for latentvariable de
omposition.
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Figure 3·1: Illustration of the Latent Class Model 
omputation. It isequivalent to a matrix de
omposition3.2.3 Probabilisti
 Latent Component Analysis (PLCA)Before we present the framework, we �rst brie�y des
ribe Probabilisti
 Latent ComponentAnalysis (Smaragdis and Raj, 2007; Smaragdis et al., 2006), whi
h is equivalent to latent
lass models.Consider a magnitude spe
trogram V of a given sound snippet. Let the dimensions ofthe matrix be F × T (i.e., there are F frequen
y indi
es and T time frames). As des
ribedin Chapter 2, V 
an be thought of as a histogram of frequen
y lo
alized sound atoms. Theentry in ea
h time-frequen
y bin Vft des
ribes how mu
h a
ousti
 energy we have at theparti
ular frequen
y and time-frame. Let the random variable f represent the frequen
yindex and t represent the time-frame. PLCA allows us to 
hara
terize the joint distribution

P (f, t) as
P (f, t) =

∑

z

P (z)P (f |z)P (t|z). (3.7)As we showed in equation (3.6) with Latent Class Models, we 
an write this equation inmatrix form as
P = WSH, (3.8)where F ×T matrix P represents the two-dimensional distribution P (f, t), W is an F ×Kmatrix with the f -th entry of the z-th 
olumn representing P (f |z), S is an K×K diagonalmatrix where the z-th diagonal element represents P (z), and H is an K × T matrix withthe t-th element of the z-th row representing P (t|z). Random variables 
orresponding toboth dimensions are thought of as features and are treated symmetri
ally. The generative



27pro
ess for the model is as follows:
• Choose a value for latent variable z a

ording to the distribution P (z),
• Choose a value for f based on P (f |z) and a value for t based on the distribution

P (t|z).
• Repeat the above two steps V times, where V =

∑

f,t Vft (i.e., the total number ofenergy �quanta� observed).Figure 3·2 shows the graphi
al model for this generative pro
ess.
Figure 3·2: Graphi
al model for two-dimensional latent 
lass model. Cir-
les represent variables, a box surrounding them indi
ates how many timesthey should be drawn and arrows indi
ate statisti
al dependen
e. z repre-sents the hidden variable, f and t are the features drawn in the two dimen-sions in a given draw, and V is the total number of draws.The obje
tive of the analysis is to evaluate the underlying time-frequen
y stru
tureof the given sound snippet by 
hara
terizing the generative distribution. This is done byestimating the parameters on the right hand side of equation (3.7) from the observed P (f, t).We 
an a

omplish this by using the Expe
tation-Maximization algorithm (Dempster et al.,1977; M
La
hlan and Krishnan, 1997; Neal and Hinton, 1998). The algorithm 
ontainstwo steps - expe
tation and maximization - whi
h are alternated in an iterative manneruntil 
onvergen
e. All parameters are initialized to random values before starting the �rstiteration. In the expe
tation step, we estimate the �
ontribution� of the latent variable zas

P (z|f, t) =
P (z)P (f |z)P (t|z)

∑

z P (z)P (f |z)P (t|z)
. (3.9)
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Figure 3·3: Illustration of PLCA applied on a spe
trogram of three pi-ano notes (bottom right). The top-right panel displays the extra
tedtime marginals and the bottom-left panel shows the extra
ted frequen
ymarginals. The top-left plot shows the mixture weights P (z). Noti
e thatthe frequen
y marginals des
ribe the spe
tra of the notes while the time-marginals des
ribe their energy as a fun
tion of time.



29In the maximization step, we re-estimate the marginals and the mixture weights using theabove weighting to obtain a new and more a

urate estimate:
P (z) =

∑

f

∑

t VftP (z|f, t)
∑

z

∑

f

∑

t VftP (z|f, t)
, (3.10)

P (f |z) =

∑

t VftP (z|f, t)
∑

f

∑

t VftP (z|f, t)
, (3.11)

P (t|z) =

∑

f VftP (z|f, t)
∑

f

∑

t VftP (z|f, t)
. (3.12)Figure 3·3 shows an example where PLCA was applied on an audio sample 
orrespondingto three piano notes. The latent variable was allowed to take three values and the extra
tedfrequen
y 
omponents 
orrespond to the spe
tra of the three notes present in the sample.3.3 Latent Variable De
omposition: FrameworkWe have seen in the previous se
tion that Latent Class Models and PLCA are equivalent.For a
ousti
 data in the form of a F × T matrix V, the models de
ompose the distribution

P (f, t) symmetri
ally by 
onsidering both the f and t dimensions as features. Instead ofa symmetri
al de
omposition of PLCA, one 
an have a di�erent de
omposition where thetwo dimensions treated di�erently5:
P (f, t) = P (t)

∑

z

P (f |z)P (z|t), (3.13)or
P = WHS (3.14)in matrix form, where P represents the two-dimensional distribution P (f, t), W is an F×Kmatrix with the f -th entry of the z-th 
olumn representing P (f |z), H is an K × T matrixwith the z-th entry of the t-th 
olumn representing P (z|t), and S is an T × T diagonalmatrix with the t-th diagonal element equal to P (t). Figure 3·4 shows the graphi
al model5Instead, we 
an use P (f, t) = P (f)

P

z
P (t|z)P (z|f) (or in matrix form: PF×T = SF×F WF×KHK×T ,where subs
ripts denote matrix sizes and S is a diagonal matrix). This is numeri
ally equivalent to usingequation (3.13) or (3.14) with the input dimensions transposed.



30for this fa
torization. Hofmann (2001), motivated by appli
ations in semanti
 analysis oftext 
orpora, introdu
ed this model as Probabilisti
 Latent Semanti
 Analysis.
Figure 3·4: Graphi
al model for alternative de
omposition of the two-dimensional latent 
lass model. Cir
les represent variables, a box surround-ing them indi
ates how many times they should be drawn and arrows in-di
ate statisti
al dependen
e. Ea
h 
olumn ve
tor of the data matrix V is
onsidered a separate data ve
tor. z represents the hidden variable, f is thefeature drawn in a given draw, Vt is the total number of draws for the t-thdata ve
tor, and T is the total number of data ve
tors.In this se
tion, we present a spe
i�
 
ase of the de
omposition of the latent 
lass modelas de�ned in equations (3.13) and (3.14). It was originally proposed by Raj and Smaragdis(2005) in the 
ontext of separating talkers from single-
hannel a
ousti
 re
ordings. Ea
hdata ve
tor is 
onsidered independently and we model T one-dimensional distributions Pt(f)instead of the two-dimensional distribution P (f, t). Treating the two dimensions di�erentlyallows the resulting de
omposition to be interpreted easily as �
omponents� 
orrespondingto underlying stru
ture of the data and their �mixture weights.� This model will form thebasi
 
omputational framework of this thesis. Hen
eforth, the terms latent variable modeland latent variable de
omposition will refer spe
i�
ally to this model, unless expli
itly statedotherwise.3.3.1 Latent Variable ModelConsider a random pro
ess 
hara
terized by the probability P (f) of drawing a featureunit f in a given draw. Let the random variable f take values from the set {1, 2, . . . , F}.Let us assume that P (f) is unknown and what one 
an observe instead is the result of



31multiple draws from the underlying pro
ess. In other words, we observe feature 
ounts, orthe number of times feature f is observed after repeated draws. We 
an approximate thegenerative distribution P (f) by using the normalized set of 
ounts.Now suppose we also know that P (f) is 
omprised of K hidden distributions or latentfa
tors. The observation in a given draw might 
ome from any one of the K distributions.The distributions are sele
ted a

ording to their relative probabilities, whi
h remain 
on-stant a
ross draws in a given experiment. We are allowed to run multiple experiments andobserve feature 
ounts for ea
h experiment. The probabilities of the hidden distributionsvary from experiment to experiment. Our task is to 
hara
terize these hidden distributions.Let us de�ne P (f |z) as the probability of observing feature f 
onditioned on a latentvariable z, where z represents the index de�ning whi
h hidden distribution is being 
on-sidered. The probability of pi
king the z-th distribution in the t-th experiment 
an berepresented by Pt(z). We 
an now formally write the model as
Pt(f) =

∑

z

P (f |z)Pt(z), (3.15)where Pt(f) gives the overall probability of observing feature f in the t-th experiment.Here, the multinomial distributions {P (f |z)} 
an be thought of as basis 
omponents thatare 
hara
teristi
 to all experiments. Pt(z) are mixture weights that signify the 
ontributionof P (f |z) towards Pt(f). The subs
ript t indi
ates that mixture weights 
hange fromexperiment to experiment.The random pro
ess generating 
ounts in the t-th experiment 
an be summarized as1. Pi
k a latent variable z with probability Pt(z).2. Pi
k feature f from the multinomial distribution P (f |z).3. Repeat the above two steps V times,where V is total number of draws in experiment t. Figure 3·5 shows the graphi
al model de-pi
ting the pro
ess. This model is equivalent to using the latent 
lass model (or equivalentlyPLCA) on the result of every experiment independently.
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Figure 3·5: Graphi
al model for the random pro
ess underlying the gen-eration of a data ve
tor. Cir
les represent variables, the surrounding boxrepresents repeated draws and the arrow represents dependen
e. z is thehidden variable, f is the feature drawn, and V is the total number of draws.3.3.2 Parameter EstimationLet Vft represent the feature 
ount of feature f in the t-th experiment. Given feature
ounts Vft, we wish to estimate parameters P (f |z) and Pt(z). Let Λ represent the set ofparameters, i.e. Λ = {P (f |z), Pt(z)}. We use a maximum likelihood formulation of theproblem. The log-likelihood of observing the obtained f 
ounts a
ross all T experiments isgiven by

P =
∑

t

∑

f

Vft log Pt(f). (3.16)The maximum likelihood method estimates parameters su
h that this log-likelihood is maxi-mized. The standard pro
edure for maximum likelihood estimation in latent variable modelsis the Expe
tation Maximization (EM) algorithm. EM alternates two steps: (1) an expe
-tation (E) step where the a posteriori probabilities of the latent variables are 
omputedbased on the 
urrent estimates of the parameters, and (2) a maximization (M) step, whereparameters are updated su
h that the expe
ted 
omplete data log-likelihood6 is maximized.For the E-step, we obtain the a posteriori probability for the latent variable as
Pt(z|f) =

Pt(z)P (f |z)
∑

z Pt(z)P (f |z)
. (3.17)6The term �
omplete data log-likelihood� refers to the log-likelihood 
al
ulated by 
onsidering the like-lihood of the obtained 
ounts of both observed variable f and the latent variable z. It is given by P (f̄ , z̄),where f̄ and z̄ represent the sets of all observations of f and z in the draws that generated all data ve
tors.The expe
tation is over the distribution P (z̄|f̄ ; Λ).



33In the M-step, we maximize the expe
ted 
omplete data log-likelihood. The expe
tedlog-likelihood 
an be written as
L = Ez̄|f̄ ;Λ log P (f̄ , z̄), (3.18)where f̄ and z̄ represent the set of all observations of f and z in the draws that generatedall data ve
tors. The 
omplete data likelihood 
an be written as

P (f̄ , z̄) =
∏

j,t

Pt(fj , zj) =
∏

j,t

Pt(zj)P (fj |zj), (3.19)where fj and zj are the values of variables f and z in the j-th draw. Hen
e, we 
an writethe fun
tion L as (ignoring the 
onstant terms)
L = Ez̄|f̄ ;Λ log

∏

j,t

Pt(fj , zj)

= Ez̄|f̄ ;Λ

∑

j,t

log Pt(fj , zj)

=
∑

j,t

Ezj |fj ;Λ log Pt(fj , zj)

=
∑

j,t

Ezj |fj ;Λ log Pt(zj) +
∑

j,t

Ezj |fj ;Λ log P (fj |zj)

=
∑

j,t

∑

z

P (z|fj) log Pt(z) +
∑

j,t

∑

z

P (z|fj) log P (fj |z) (3.20)In the above equation, we 
an 
hange the summation over draws j to a summation overfeatures f by a

ounting for how many times f was observed, i.e. the f -th entry in theobserved data ve
tor7. The expe
ted log-likelihood 
an now be written as
L =

∑

t

∑

f

γVft

∑

z

Pt(z|f) log Pt(z) +
∑

t

∑

f

γVft

∑

z

Pt(z|f) log P (f |z). (3.21)We have additional 
onstraints on the parameters Pt(z) and P (f |z) as they representprobability distributions, given by ∑z Pt(z) = 1 and ∑f P (f |z) = 1. In order to take 
areof these normalization 
onstraints, the above equation must be augmented by appropriate7Sin
e observed data is modeled as a histogram, entries should be integers. To a

ount for this, weweight the data by an unknown s
aling fa
tor γ.



34Lagrange multipliers τt and ρz,
Q = L+

∑

t

τt

(

1−
∑

z

Pt(z)
)

+
∑

z

ρz

(

1−
∑

f

P (f |z)
) (3.22)Maximization of Q with respe
t to Pt(z) and P (f |z) leads to the following sets ofequations

∑

f

γVftPt(z|f) + τtPt(z) = 0, (3.23)
∑

t

γVftPt(z|f) + ρzP (f |z) = 0. (3.24)After eliminating the Lagrange multipliers, we obtain the M-step re-estimation equations
P (f |z) =

∑

t VftPt(z|f)
∑

f

∑

t VftPt(z|f)
, Pt(z) =

∑

f VftPt(z|f)
∑

z

∑

f VftPt(z|f)
. (3.25)The E-step update is given by equation (3.17) and the M-step update is given by equa-tions (3.25). The parameters P (f |z) and Pt(z) are randomly initialized and re-estimatedusing the above equations iteratively until a termination 
ondition is met. The EM algo-rithm guarantees that the above multipli
ative updates 
onverge to a lo
al optimum.Figure 3·6 shows an example appli
ation of the latent variable model. The model wasused to analyze handwritten digits from the USPS Handwritten Digits database8. Twenty�ve basis 
omponents were extra
ted by analyzing 1000 di�erent instan
es for every digit.Ea
h instan
e of a digit was given by the pixel intensities as a 16×16 matrix. We unwrappedea
h one as a 256-dimensional ve
tor and represented the set of 1000 ve
tors as a 256×1000matrix V. The matrix V was used as the input to the algorithm. Figure 3·6 shows theextra
ted 
omponents for digit �2.�3.3.3 Latent Variable Model as Matrix De
ompositionWe 
an write the model given by equation (3.15) in matrix form as pt = Wht, where

pt is a 
olumn ve
tor indi
ating Pt(f), ht is a 
olumn ve
tor indi
ating Pt(z), and W is8from http://www.
s.toronto.edu/∼roweis/data.html.
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Basis Components Mixture Weights

Data Vectors

Figure 3·6: Latent Variable Model applied on the USPS Handwritten Dig-its database. Twenty-�ve basis 
omponents were learned from the data setand basis 
omponents extra
ted for the digit �2� are shown in the left panel.The basis 
omponents are shown in a 5× 5 tile. They 
orrespond to varioushand-strokes (basis ve
tors) that 
ould be added to obtain the digit �2.�The three panels on top-right show the mixture proportions with whi
h thebasis 
omponents 
ombine to approximate the input ve
tors (shown in thebottom three panels).



36the F ×K matrix with the (f, z)-th element 
orresponding to P (f |z). Con
atenating all
olumn ve
tors pt and ht as matri
es P and H respe
tively, one 
an write the model as
P = WH. (3.26)This formulation is similar to matrix de
ompositions su
h as PCA, ICA and NMF. We haveadditional 
onstraints that the 
olumns of P, W and H, being probability distributions,should be positive and sum to unity. Thus, the model is equivalent to a matrix de
ompo-sition whi
h operates in the probability distribution spa
e and is illustrated in Figure 3·7.

Figure 3·7: Illustration of the Latent Variable Model 
omputation, whi
his equivalent to a matrix de
omposition.Furthermore, we want to 
larify how the de
omposition P = WH relates to the datamatrix V. Let the matrix V̄ refer to the data in V with all the 
olumns normalized. Inother words, the t-th 
olumn of V̄, v̄t, is the normalized version of vt, the t-th 
olumnof V (the entries of v̄t sum to unity). Let us refer to the normalized 
olumns v̄t as datadistributions. We �rst show that the maximum likelihood estimator for the parameters
P (f |z) and Pt(z) attempts to minimize the Kullba
k-Leibler (KL) distan
e between thedata distribution v̄t and the model approximation Pt(f).Maximum likelihood method estimates parameters su
h that the log-likelihood P, givenby equation (3.16), is maximized. We 
an rewrite it as

P =
∑

t

(
∑

f

Vft)
∑

f

Vft
∑

f ′ Vf ′t
log Pt(f). (3.27)



37Representing the normalized data Vft/
∑

f Vft by V̄ft, we 
an write the log-likelihood as
P =

∑

t

(
∑

f

Vft)
∑

f

V̄ft log
(Pt(f)

V̄ft

)

+
∑

t

(
∑

f

Vft)
∑

f

V̄ft log V̄ft

=
∑

t

(
∑

f

Vft)
∑

f

V̄ft log
(Pt(f)

V̄ft

)

+ 
onstant term
= −

∑

t

(
∑

f

Vft)DKL(v̄t||pt) + 
onstant term, (3.28)where
DKL(v̄t||pt) =

∑

f

V̄ft log
V̄ft

Pt(f)
(3.29)is the Kullba
k-Leibler distan
e between the data distribution v̄t and the model approxi-mation pt. The term ∑

t(
∑

f Vft)
∑

f V̄ft log V̄ft is a 
onstant sin
e it does not depend on
Pt(f). From equation (3.28), we 
an see that maximizing the log-likelihood P is equivalentto minimizing the sum of the KL distan
es DKL(v̄t||pt), s
aled by the total number ofdraws ∑f Vft.In other words, the model attempts to �nd a matrix de
omposition that approximatesthe data distributions V̄ as

V̄ ≈ P = WH, (3.30)where the approximation error is measured by the KL distan
e. Equivalently, the modelattempts to approximate the data matrix V as
V ≈WHG, (3.31)where G is a T × T diagonal matrix with the t-th entry equal to ∑f Vft. Now, we 
anwrite the update equations (3.17) and (3.25) in matrix form. Writing the normalizationsteps separately, we have

Wnew
fk = W old

fk

∑

t

HktVft

(W oldH)ft
, Wnew

fk =
Wnew

fk
∑

f Wnew
fk

, and,
Hnew

kt = Hold
kt

∑

f

WfkVft

(WHold)ft
, Hnew

kt =
Hnew

kt
∑

f Vft
, (3.32)



38where Aij represents the ij-th entry of matrix A.3.3.4 Relation to Other ModelsThe latent variable model we presented is 
losely related to two te
hniques - Probabilisti
Latent Semanti
 Analysis, and Non-negative Matrix Fa
torization. In this subse
tion, webrie�y 
omment on how the model relates to these te
hniques.Probabilisti
 Latent Semanti
 AnalysisHofmann (2001) introdu
ed Probabilisti
 Latent Semanti
 Analysis (PLSA), motivated byappli
ations in semanti
 analysis of text 
orpora. The aim of the method is to identify
ontexts of word usage in do
uments without re
ourse to a di
tionary or a thesaurus. Thisis not straightforward be
ause of two kinds of words that o

ur in languages:Polysems - words with multiple meanings, andSynonyms - words with identi
al or similar meaning.PLSA is largely in�uen
ed by Latent Semanti
 Analysis (LSA; Deerwester et al., 1990).The key idea of LSA is to map high-dimensional 
ount ve
tors to a lower dimensional latentsemanti
 spa
e. By applying LSA on ve
tor spa
e representations of text do
uments, whereevery do
ument in a 
orpus is represented by a ve
tor of word-
ounts (Salton and M
Gill,1983), one aims to represent semanti
 relations between words and/or do
uments in termsof their proximity in the semanti
 spa
e. The te
hnique stems from linear algebra and isbased on a L2-optimal approximation of matri
es of word 
ounts based on a Singular ValueDe
omposition (SVD). One starts with the standard SVD given by
V = UΣYt, (3.33)where V is the term-do
ument matrix of word 
ounts, U and Y are matri
es with or-thonormal 
olumns, and the diagonal matrix Σ 
ontains the singular values of V. TheLSA approximation of V is 
omputed by thresholding all but the largest K singular values



39in Σ to zero. One might think of the rows of UΣ as de�ning 
oordinates for do
uments inthe latent spa
e. The hope is that terms having a 
ommon meaning and similar do
uments(even if they don't have terms in 
ommon) are roughly mapped to the same dire
tion inthe latent spa
e.As the name suggests, PLSA provides a probabilisti
 framework for LSA. Let P (d)denote the probability that a word o

urren
e will be observed in a parti
ular do
ument d,
P (w|z) denote the 
lass-
onditional probability of word w 
onditioned on the unobserved
lass variable z, and P (z|d) denote a do
ument spe
i�
 probability distribution over thelatent variable spa
e. PLSA de�nes a generative model for word/do
ument 
o-o

urren
esby the following s
heme:1. sele
t a do
ument d with probability P (d),2. pi
k a latent 
lass z with probability P (z|d), and3. generate a word w with probability P (w|z).One 
an now des
ribe the joint word-do
ument probability distribution as

P (d, w) = P (d)
∑

z

P (w|z)P (z|d). (3.34)This equation is identi
al to equation (3.13) and 
orresponds to an alternative de
omposi-tion of the latent 
lass model
P (d, w) =

∑

z

P (z)P (d|z)P (w|z).The PLSA model, thus, is a spe
i�
 
ase of the general framework. The latent variablemodel introdu
ed in the previous se
tion 
orresponds to a simpli�ed version of this modelwhere do
ument probabilities are not expli
itly 
omputed. The maximum likelihood esti-mates of the parameter P (d) is the fra
tion of all observations that 
ome from the d-thdo
ument. The estimates of P (w|z) and P (z|d) 
an be shown to be identi
al to the up-dates of the latent variable parameters derived in Se
tion 3.3.2, where words w 
orrespond



40to features f and do
uments d 
orresponds to experiments indexed by t.Non-negative Matrix Fa
torizationNon-negative Matrix Fa
torization (Paatero and Tapper, 1994; Lee and Seung, 1999) wasintrodu
ed as a te
hnique to �nd non-negative parts-based representation of non-negativedata. Given an F × T matrix V where ea
h 
olumn 
orresponds to a data ve
tor, NMFapproximates it as a produ
t of non-negative matri
es W̄ and H̄, i.e. V ≈ W̄H̄, where
W̄ is a F ×K matrix and H̄ is a K × T matrix. We use W̄ and H̄ to disambiguate theNMF de
omposition matri
es from the notation used in Se
tion 3.3.3. The 
olumns of W̄
an be thought of as basis 
omponents that are optimized for the linear approximation of
V. The non-negativity 
onstraints make the representation purely additive (allowing no
an
ellations), in 
ontrast to other linear representations su
h as Prin
ipal ComponentsAnalysis (PCA) and Independent Components Analysis (ICA).The optimal 
hoi
e of matri
es W̄ and H̄ are de�ned by those non-negative matri
esthat minimize the re
onstru
tion error between V and W̄H̄ using iterative update rules.Di�erent error fun
tions have been proposed whi
h lead to di�erent update rules (Lee andSeung, 1999, 2001). Shown below are multipli
ative update rules derived by Lee and Seung(1999) using an error metri
 similar to the Kullba
k-Leibler divergen
e:

W̄fk ← W̄fk

∑

t

H̄ktVft

(W̄ H̄)ft
, W̄fk =

W̄fk
∑

f W̄fk
, and,

H̄kt ← H̄kt

∑

f

W̄fkVft

(W̄ H̄)ft
, (3.35)where Aij represents the i-th row and the j-th 
olumn of matrix A. If one 
omparesthe above equations to the EM update rules for the latent variable model given by equa-tions (3.32), it is easy to see that the update rules are identi
al if one lets

W̄ = W, and H̄ = HG. (3.36)



413.4 Latent Variable De
omposition - Geometri
al InterpretationThe latent variable model as given by equation (3.15) expresses an F -dimensional distri-bution Pt(f) as a mixture of K F -dimensional basis distributions P (f |z). The aim of themodel is to �nd P (f |z) su
h that Pt(f) best approximates the data distributions v̄t. Beingprobability distributions, P (f |z), Pt(z) and v̄t are points in the (F − 1)-dimensional sim-plex. In 
ase of 3-dimensional distributions (a 3-dimensional input spa
e), the generativedistributions and basis 
omponents lie within the Standard 2-Simplex (the plane de�nedby points on ea
h axis whi
h are unit distan
e from the origin, see Figure 3·8) and hen
eare easy to visualize.

Figure 3·8: The triangle formed by points on ea
h axis whi
h are unitdistan
e from the origin is 
alled the Standard 2-Simplex. It is shown inthe �gure by the blue region. All triples 
orresponding to 3-dimensionalmultinomial distributions (so that the three numbers sum to unity) mustlie within the Standard 2-Simplex. Similarly, n-tuples 
orresponding toa n-dimensional multinomial distribution lie within the Standard (n − 1)Simplex.To understand and visualize the workings of the model, we 
reated an arti�
ial dataset of 400 3-dimensional distributions and applied the latent variable model. The modelexpresses the generative distribution Pt(f) as a linear 
ombination of basis 
omponents
P (f |z) where the mixture weights Pt(z) are positive and sum to unity. Geometri
ally, thisimplies that a given generative distribution is expressed as a point within the 
onvex hullformed by the basis 
omponents. Sin
e Pt(f) is 
onstrained to lie within the simplex de�ned



42by P (f |z), it 
an only model v̄t a

urately if the latter also lies within the 
onvex hull. Any
v̄t that lies outside the 
onvex hull is modeled with error. Thus, the obje
tive of the modelis to identify P (f |z) su
h that they form a 
onvex hull surrounding the data distributions
v̄t. This is illustrated in Figure 3·9 for 2 and 3 basis 
omponents.Both the basis 
omponents and mixture weights en
ode information about the data set.Basis 
omponents, being the 
orners of the 
onvex hull that en
loses all the data points,en
odes global 
hara
teristi
s about the data. The mixture weights, being asso
iated withindividual data points (experiments), en
ode lo
al 
hara
teristi
s. The intuition is that thebasis 
omponents 
orrespond to 
hara
teristi
s of the random pro
ess that remain invariantduring the generation of all the data points (all experiments).We now 
onsider two spe
ial 
ases of the de
omposition that adds insight to its nature.Firstly, 
onsider the 
ase where we extra
t F basis 
omponents, i.e. K = F , 
orrespondingto a 
omplete 
ode. One of the solutions 
orresponds to the 
ase where the basis 
omponentsare su
h that

P (f |z) =







1 if f = z

0 otherwise, (3.37)where f ∈ {1, . . . , F}, z ∈ {1, . . . , F}. In terms of the matrix notation used in Se
tion 3.3.3,this implies that the basis 
omponent matrix W is given by the identity matrix I. In this
ase, ht, the mixture weight ve
tor 
orresponding to Pt(z), is equal to the data distribution
v̄t, i.e. H = V̄. In other words, the basis 
omponents 
orrespond to the 
orners of theStandard (F − 1) simplex. Even though this 
orresponds to a perfe
t de
omposition, it isnot of any utility sin
e the basis 
omponents do not provide any meaningful 
hara
terizationof the data. They just represent the dimensions of the spa
e in whi
h the data lie. All theinformation about the data points is en
oded by the mixture weights.If we try to extra
t more basis 
omponents than the dimensionality of the input spa
e
F , we en
ounter the problem of indetermina
y. In su
h 
ases where we aim to extra
t anover
omplete set of basis 
omponents, there are multiple ways of expressing the data distri-
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Figure 3·9: Illustration of the latent variable model on 3-dimensional dis-tributions. Both panels show distributions represented within the Standard2-Simplex given by {(001), (010), (100)}. Two Basis Components (top) and 3Basis Components (bottom) extra
ted from 400 data points are shown. Themodel approximates data ve
tors as points lying on the line approximation(top) or within the 
onvex hull (bottom) formed by the basis 
omponents.Also shown are two data points (marked as + and ×) and their approxima-tions by the model (shown by ♦ and �). As one 
an see, the model getsmore a

urate as the number of basis 
omponents in
reases from a 
ompa
t
ode of 2 basis 
omponents to a 
omplete 
ode of 3 basis 
omponents.



44butions as linear 
ombinations of the basis 
omponents. This implies that there are multiplefeasible solutions that perfe
tly model the data. The se
ond spe
ial 
ase 
orresponds to thede
omposition where we extra
t as many basis 
omponents as there are data points, i.e.
K = T . One trivial solution when K = T o

urs when the basis 
omponents are the datadistributions themselves. In matrix notation, this implies that the basis 
omponent matrix
W is equal to V̄. The mixture weight matrix H is then given by the identity matrix. Inthis 
ase, all the information about the data set is en
oded by the basis 
omponents whilethe mixture weights 
ontribute no information.3.5 Latent Variable Framework for Sour
e SeparationAs mentioned in Chapter 2, the magnitude spe
trogram of an a
ousti
 signal 
an be treatedas a histogram. Ea
h time-frequen
y bin des
ribes how mu
h a
ousti
 energy is present atthe parti
ular frequen
y and the parti
ular time frame. Sin
e the latent variable model isappli
able to any data that 
an be 
onsidered as 
ounts or histograms, we 
an apply it toanalyze magnitude spe
trograms. In this se
tion, we show how the model 
an be used toextra
t frequen
y stru
ture of all the sounds in the mixture and use the learned informationto extra
t the 
ontributions of ea
h sour
e to the mixture spe
trogram.Let us formally introdu
e the problem. Let V represent the magnitude spe
trogramof a mixture sound signal. We would like to extra
t the magnitude spe
trograms of ea
hsour
e present in the mixture. Let us assume that we know the number of sour
es presentin the mixture and a set of training re
ordings is available for ea
h sour
e. Let Ls representthe magnitude spe
trogram of the training data for the s-th sour
e, where Ls

ft denotesthe energy in frequen
y bin f at time frame t for sour
e s. There are two stages in theseparation algorithm. In the �rst stage, we learn the 
omponent multinomial distributionsfor ea
h sour
e from the training spe
trograms. In the separation stage, these learned basis
omponents are used to extra
t the 
ontribution of the parti
ular sour
e to the mixturespe
trogram.



453.5.1 Training Stage - Learning Parameters for Sour
esIn the learning stage, the 
omponent multinomial distributions denoted by Ps(f |z) arelearned for ea
h sour
e. The latent variable model is given by equation (3.15), whi
h isreprodu
ed below:
Pt(f) =

∑

z

Pt(z)Ps(f |z).

Pt(f) represents the normalized 
ounts of the t-th frame of Ls, i.e. it is the underlyinggenerative distribution for the t-th time frame. We would like to 
hara
terize it as a mixtureof 
omponent multinomials Ps(f |z), ea
h one weighted by a 
orresponding mixture weight
Pt(z). The subs
ript s in Ps(f |z) indi
ates that these terms are spe
i�
 to the sour
e; theaim of this stage is to learn these 
omponent multinomials for ea
h sour
e.The parameters Pt(z) and Ps(f |z) are initialized randomly and reestimated throughiterations of equations (3.17) and (3.25), reprodu
ed below.

Pt(z|f) =
Pt(z)Ps(f |z)

∑

z Pt(z)Ps(f |z)
,

Ps(f |z) =

∑

t Pt(z|f)Ls
ft

∑

t

∑

f Pt(z|f)Ls
ft

,

Pt(z) =

∑

f Pt(z|f)Ls
ft

∑

z

∑

f Pt(z|f)Ls
ft

.Only the Ps(f |z) values are used in re
onstru
tion; the rest of the terms are dis
arded.Figure 3·10 shows a few examples of typi
al Ps(f |z) distributions learned for a male anda female talker. Figure 3·11 shows more examples of Ps(f |z) distributions 
hara
terizingdi�erent sour
es.3.5.2 Latent Variable Model for Mixture Spe
trogramBefore we 
an des
ribe how to separate the sour
es, we should have a model for approxi-mating the mixture spe
trogram.In a mixture spe
trogram, a fra
tion of the total spe
tral 
ontent in ea
h frequen
y isderived from ea
h sour
e. The spe
trum is modeled as the out
ome of repeated draws from



46
0 100 200 300 400 500

0

0.04

0 100 200 300 400 500
0

0.1

0 100 200 300 400 500
0

0.1

Frequency Index

0 100 200 300 400 500
0

0.1

0 100 200 300 400 500
0

0.04

0 100 200 300 400 500
0

0.1

Frequency IndexFigure 3·10: The three histograms on the top panel shows typi
al multi-nomial distributions obtained for a male talker. The three panels on thebottom show typi
al multinomials for a female talker.
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t 1 2 3 4 5 6 7 8 9 10

f

z(a) Spee
h Spe
trogram (left) and Basis Components (right)
t 1 2 3 4 5 6 7 8 9 10

f

z(b) Piano Spe
trogram (left) and Basis Components (right)
t 1 2 3 4 5 6 7 8 9 10

f

z(
) Harp Spe
trogram (left) and Basis Components (right)Figure 3·11: Examples of typi
al basis 
omponents learned from (a) spee
h,(b) piano, and (
) harp. Noti
e that the basis 
omponents for di�erentsignals are qualitatively di�erent and have spe
tral stru
ture 
hara
teristi
of the sour
es they represent.



48a two-level random pro
ess. Within ea
h draw, the pro
ess �rst draws a sour
e (representedby the latent variable s), then a spe
i�
 multinomial for the sour
e (latent variable z), and�nally a frequen
y index f from the multinomial. The 
onstraint here is that z takes ona di�erent set of values for ea
h sour
e. The overall distribution underlying the spe
tralve
tor for the t-th analysis frame is given by
Pt(f) =

∑

s

Pt(s)
∑

z∈{zs}

Pt(z|s)Ps(f |z), (3.38)where Pt(s) is the a priori probability of the s-th sour
e and {zs} represents the set ofvalues that z 
an take for that sour
e.3.5.3 Separating Sour
es from MixturesThe pro
ess of extra
ting the 
ontributions of ea
h sour
e to the mixture spe
trogramhas two stages. In the �rst stage, the mixture multinomial distribution of ea
h of thesour
es is estimated in ea
h analysis frame. This implies the estimation of all parametersof equation (3.38) ex
ept the Ps(f |z) terms whi
h are obtained from the training stage.In the se
ond stage, the separated spe
trum for the sour
e within every frame is obtainedas the expe
ted value of the number of draws of ea
h frequen
y index from the mixturemultinomial distribution for the sour
e.The Pt(s) and Pt(z|s) terms of equation (3.38) 
an be estimated by iterations of thefollowing equations derived using the EM algorithm:
Pt(s, z|f) =

Pt(s)Pt(z|s)Ps(f |z)
∑

s Pt(s)
∑

z∈{zs}
Pt(z|s)Ps(f |z)

Pt(s) =

∑

z∈{zs}

∑

f Pt(s, z|f)Vft
∑

s

∑

z∈{zs}

∑

f Pt(s, z|f)Vft

Pt(z|s) =

∑

f Pt(s, z|f)Vft
∑

z∈{zs}

∑

f Pt(s, z|f)Vft
. (3.39)Details of the derivation are shown in Appendix A.On
e all the terms have been estimated, the mixture multinomial distribution for the
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s-th sour
e in the t-th analysis frame 
an be obtained as

Pt(f |s) =
∑

z∈{zs}

Pt(z|s)Ps(f |z). (3.40)A

ording to the model, the total number of draws of any frequen
y is the sum of the drawsfor the individual sour
es, i.e.
Vft =

∑

s

Vft(s), (3.41)where Vft(s) is the number of draws of f from the s-th sour
e. The expe
ted value of
Vft(s), given the total 
ount Vft, is hen
e given by

V̂ft(s) =
Pt(s)Pt(f |s)

∑

s Pt(s)Pt(f |s)
Vft. (3.42)

V̂ft(s) is the estimated value of frequen
y f in the spe
tral ve
tor of the s-th sour
e andthe t-th frame. The phase of the short-time Fourier transform of the mixed signal is pairedwith the estimated magnitude given by V̂ft. An inverse Fourier transform is then performedto obtain the time domain re
onstru
tion for the sour
e.3.5.4 Separation ResultsWe now present results of experiments that demonstrate the appli
ability of the latent vari-able framework for separation of talkers. Experiments were 
ondu
ted on syntheti
 mixturesof talkers taken from the Wall Street Journal (WSJ) database. We evaluated the results onsix pairs of talker 
ombinations � two were female/male pairs, two were male/male, and twowere female/female. Three female and three male talkers were randomly 
hosen from thedatabase to obtain the six talker pairs. For every talker, the WSJ 
orpus 
onsists of about140 utteran
es 
omprising between 16 to 18 minutes of spee
h. Of these, 134 utteran
eswere randomly 
hosen to serve as the training set. The remaining 6 utteran
es were labeledas the test set. The sampling rate for all the signals was set to 16 kHz.We used short-term Fourier transforms to obtain spe
trograms from the time signals.We in
remented our analysis frame by one-fourth of the FFT length. No zero padding was



50used, and data was shaped by a Hanning window before the FFT. We used various valuesfor the FFT size, taken from the set {128, 256, 512, 1024, 2048, 4096}, 
orresponding to ananalysis window length ranging from 8 ms to 256 ms. All 
omputations were performedusing MATLAB software.Consider a given experiment where the task is to separate the two talkers present in themixture signal. In the training stage, we learned K basis 
omponents, K ∈ {10, 20, 40, 80,120, 160, 200}, from the training data for ea
h talker. Following the pro
edure outlined inSe
tion 3.5.1, 15 randomly 
hosen utteran
es from the training set, 
omprising about 100to 120 se
onds of spee
h, were used to determine the basis 
omponents.We 
reated the mixture signal by digitally adding test signals for both talkers. Thelength of the mixed signal was set to the shorter of the two signals. Prior to addition,the signals were normalized to have 0 mean and unit varian
e, resulting in a 0 dB target-to-interferen
e ratio for ea
h talker. The mixture spe
trogram was analyzed using thepro
edure outlined in Se
tion 3.5.3 to obtain re
onstru
tions of both talkers.The quality of spee
h separation is hard to evaluate reliably. We provide two measuresthat have been used in the literature. Let iO and iR represent the magnitude spe
trogramsof the original test signal and the re
onstru
ted signal of the i-th talker in the mixture. Let
N and Φ represent the magnitude and phase of the mixture spe
trogram. De�ne a fun
tion

gi(X) = 10 log10

(

∑

f,t
iO2

ft
∑

f,t |
iOfte

jΦft −Xfte
jΦft |2

)

. (3.43)Following Raj and Smaragdis (2005), we de�ne the SNR improvement for the i-th talker as
SNRi = gi(

iR)− gi(N) (3.44)The se
ond metri
, Speaker Energy Ratio (SER), was used by Smaragdis (2007) and isbased on 
orrelations between re
onstru
ted and original signals. The SER for talker i isgiven by
SERi = 10 log10

(

cii
∑

∀j 6=i cij

) (3.45)



51where cij is the 
orrelation between the re
onstru
ted time signal for the i-th talker andthe original signal for the j-th talker.Figures 3·12 and 3·13 summarize results, plotting SNR and SER improvements, respe
-tively, for various 
ases of FFT sizes and number of basis 
omponents. The SNR and SERvalues were averaged over six experiments where ea
h experiment had a di�erent mixture oftest signals. The separation results for Male/Female talker 
ombinations are mu
h betterthan the same sex talker 
ombinations. We obtain average SNR improvements of up to 6dB in the Male/Female 
ase and up to 3 dB in the 
ase of same sex talker pairs, primarilybe
ause the basis 
omponents of talkers of the same sex have more similar 
hara
teristi
sthan basis 
omponents of di�erent-sex talkers. There needs to be some di�eren
e in thespe
tral quality of the sour
es present in the mixture for obtaining good performan
e withthe algorithm. The more similar the spe
tral 
hara
teristi
s are, the poorer performan
ewill be. The degree of separation a
hieved depends on the spe
i�
 talker pair present inthe mixture; not all talker pairs of the same sex will result in poor separation. Performan
evaries depending on the 
hoi
e of FFT size and the number of basis 
omponents. In most
ases, FFT sizes between 512 and 2048, in 
onjun
tion with 40 to 80 basis 
omponents,provides good performan
e. Figures 3·14 and 3·15 show how the FFT size and the 
hoi
eof number of basis 
omponents a�e
t performan
e on average. Small values for FFT size(128 points and less) will result in the omission of low frequen
ies in the representation,while FFT sizes longer than phoneme widths fail to model formant variations present inspee
h, thus resulting in poor performan
e. In theory, a larger number of basis 
omponentsbetter approximates a talker. However, if too many basis 
omponents are used, they beginto model the other talker in the mixture, redu
ing performan
e. A 
hoi
e of 40 or 80 basis
omponents and an FFT size of 1024 points provides reasonable performan
e a
ross alltalker 
ombinations. Figure 3·16 shows spe
trograms from a parti
ular example for theMale/Female talker pair where the spe
trograms used an FFT point size of 1024 and thetraining stage extra
ted 80 basis 
omponents.
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Figure 3·12: Average SNR improvements for various 
ombinations of num-ber of basis 
omponents and FFT sizes. The two top-panels 
orrespondto the two Male/Female talker pairs, middle-panels 
orrespond to the Fe-male/Female pairs and bottom-panels 
orrespond to Male/Male pairs.
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Figure 3·13: Average SER improvements for various 
ombinations of num-ber of basis 
omponents and FFT sizes. The two top-panels 
orrespondto the two Male/Female talker pairs, middle-panels 
orrespond to the Fe-male/Female pairs and bottom-panels 
orrespond to Male/Male pairs.
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Figure 3·14: Average SNR and SER improvements for di�erent FFT sizes.Results are averaged over all talker pairs and number of basis 
omponents.
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Figure 3·15: Average SNR and SER improvements for di�erent 
hoi
esof the number of basis 
omponents learned. Results are averaged over alltalker pairs and FFT lengths.
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Mixture

Female − Original

Female − Reconstruction

Male − Original

Male − Reconstruction

Figure 3·16: Result of a Separation Experiment for a Male/Female TalkerPair, with 1024 point FFT size and 80 basis 
omponents. The SNR and SERimprovements for the female were 6.6194 dB and 4.4414 dB respe
tively. Forthe male, the improvements were 6.4959 dB and 5.1683 dB.



563.5.5 Other Appli
ationsThe latent variable framework 
an be used for other appli
ations in addition to sour
eseparation. Below, we brie�y present an example of semi-supervised denoising appli
ation.Semi-supervised DenoisingNow, 
onsider a situation where the available spee
h signal is noisy. The talker 
hara
teris-ti
s are known a priori (i.e., 
lean training data from the talker is available), but the noisepresent in the mixture is unknown. We 
an use the latent variable framework to removenoise from the mixture.As in the 
ase of talker separation, we �rst learn a set of basis 
omponents for the talkerfrom the training data. The separation stage follows the pro
essing steps dis
ussed in thetalker separation appli
ation. In addition, we also update (learn) the basis 
omponentsrepresenting the noise. In other words, for the known talker, we estimate the mixtureweights while keeping the basis ve
tors �xed; however we estimate both the basis ve
torsand mixture weights for the noise 
omponent. Figure 3·17 shows an example in whi
hinterfering 
hime noise from 
ymbals was removed from a noisy signal of female spee
h.This approa
h of semi-supervised separation 
an also be used to extra
t foregroundsingers or lead instruments from the ba
kground musi
 in a song. Examples 
an be foundat http://
ns.bu.edu/∼mvss/
ourses/spee
hseg/.Another example appli
ation of the latent variable framework is bandwidth expansion.The idea is to estimate high-frequen
y 
omponents of narrow-band signals, su
h as sig-nals 
arried over over a telephone 
hannel. In the training stage, basis 
omponents arelearned from full-band signals. The estimation stage has two steps. We �rst estimatemixture weights for the test signals by approximating them as linear 
ombinations of thenarrow-band portion of the learned basis ve
tors. The full-band basis 
omponents are then
ombined with the newly estimated mixture weights, from whi
h 
ounts for the unobservedfrequen
ies are estimated. Details and example results are reported in (Raj et al., 2007).
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Figure 3·17: Results of a denoising experiment using the latent variableframework. The top plot shows the spe
trogram of a spee
h utteran
e by afemale talker mixed with 
himes from 
ymbals. Twenty bases were learnedfrom training data for the talker. During separation, �ve extra bases werelearned to a

ount for the unknown sour
e (
ymbals). The separated spee
hspe
trogram (mid-panel) and noise spe
trogram (bottom-panel) are shown.



583.6 Dis
ussion and Con
lusionsThis 
hapter introdu
ed a probabilisti
 latent variable framework for single-
hannel a
ous-ti
 pro
essing. The 
entral idea of the framework is to model the random pro
ess thatgenerates a given spe
tral ve
tor as a mixture of hidden multinomial distributions. Theselatent distributions or basis 
omponents are assumed to be 
hara
teristi
 of the sour
e thatgenerates the entire set of spe
tral ve
tors 
omprising the signal. We presented the theoryand illustrated the workings of the model with a geometri
 interpretation. We derivedinferen
e algorithms and showed how the framework 
an be used for sour
e separation andother appli
ations, in
luding denoising. We demonstrated the utility of the framework bypresenting results of separation experiments.A framework using latent 
omponents or basis 
omponents is very powerful. Standardmodels su
h as Gaussian Mixture Models or Hidden Markov Models that are typi
allyemployed to model spe
trograms work well for monophoni
 sounds. However, these mod-els grow in 
omplexity for polyphoni
 sound examples, and are not designed to modelthe property of additivity, des
ribing how energy from multiple sounds 
ombines in ea
hfrequen
y-time bin of the mixed signal. The latent variable framework provides an expli
itway to represent su
h mixture sounds as being 
omposed of a linear 
ombination of un-derlying 
omponents. This allows the model to be simple and at the same time endows itwith the �exibility to model various types of mixtures. The se
ond important advantageof the latent variable framework is its probabilisti
 formulation, whi
h allows us to employstatisti
al methods for estimating model parameters. This approa
h also enables one tomodel known or hypothesized stru
ture in the data in the form of prior distributions. Onesu
h prior, imposing sparsity, will be the fo
us of the next 
hapter.An important limitation of the proposed framework is related to the number of 
ompo-nents that 
an be extra
ted. The number of 
omponents that are required to 
hara
terize aparti
ular sour
e potentially 
ould be very large. However, the proposed framework 
annotlearn more 
omponents than the dimensionality of the spe
tral ve
tors, i.e. the number of



59frequen
y bins. As dis
ussed in Se
tion 3.4, two problems arise if we attempt to extra
t anover
omplete set of basis 
omponents where there are more 
omponents than the dimen-sionality of the spe
tral ve
tor. First of all, there will be multiple feasible solutions, be
ausethe problem will be under-determined. Se
ondly, the feasible solutions do not ne
essarily
hara
terize the data very well, a problem 
onsidered further in the next 
hapter. Thus,the number of 
omponents that 
an be extra
ted is limited by the number of frequen
ybins, whi
h in turn depends on the representation 
hosen to des
ribe the input. The di-mensionality of the spe
tral ve
tors is not a true 
hara
teristi
 of the signal being analyzed,but is instead just a 
hara
teristi
 of the representation sele
ted for the signal. It is notreasonable to expe
t the number of true underlying 
omponents of a signal to be limitedby the representation, and this problem reveals a logi
al �aw in the approa
h where anarbitrary 
hoi
e in the initial representation dire
tly impa
ts the quality of the solutionthat will be found. The next 
hapter extends and improves the model to over
ome thislimitation, using the 
on
ept of sparsity.
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Chapter 4Sparse Over
omplete Latent Variable De
ompositionRepresentation of the world, like the world itself, is the work of men; they de-s
ribe it from their own point of view, whi
h they 
onfuse with the absolute truth.Simone de Beauvoir4.1 Introdu
tionThis 
hapter presents an extension to the latent variable framework that allows it to over-
ome the limitations dis
ussed in the previous 
hapter. One of the main weaknesses of latentvariable de
omposition is related to the number of basis 
omponents one 
an extra
t. Whenmodeling spe
trograms, this limitation means that the number of basis 
omponents that
an be found is limited to be equal to or less than the dimensionality of the spe
tral ve
-tors. Thus, the model is limited by the representation that is 
hosen to des
ribe the signalbeing analyzed. In this 
hapter, we present a learning formulation that enables one toextra
t an over
omplete set of meaningful 
omponents, with more 
omponents than thedimensionality of the spe
tral ve
tors. We employ the notion of sparsity for this purpose.Sparse 
oding refers to a representational s
heme where, of a set of 
omponents that may be
ombined to approximate or represent data, only a small number are ne
essary to representany parti
ular input. In the framework of latent variable de
omposition, one way to obtainsu
h a sparse over
omplete 
ode of basis 
omponents is to 
onstrain the mixture weightsasso
iated with the basis 
omponents to have low entropy. A mixture weight set with lowentropy guarantees that only a few mixture weight terms are signi�
ant. We show that this



61approa
h eliminates the problem of indetermina
y, permitting us to learn an unrestri
tednumber of basis 
omponents. Mathemati
ally, the general approa
h provides a way to ex-pli
itly 
ontrol the entropy of any of the parameters of the model. Sin
e entropy is aninformation theoreti
 measure of �information,� the approa
h provides a way to 
ontrol theinformation 
ontent or the �expressiveness� of the basis 
omponents.The 
hapter is organized as follows. Se
tion 4.2 presents the theory and mathemati
al
on
epts behind this extension. We motivate the need for sparsity, present entropy as asparsity metri
, and show how it 
an be in
orporated into the latent variable framework. Weuse a maximum a posteriori formulation and derive inferen
e algorithms. In Se
tion 4.3,we provide a geometri
al interpretation of the model to give some intuition into sparseover
omplete 
odes. Se
tion 4.4 shows how the new formulation 
an be e�e
tive for sour
eseparation and presents results of experiments. We brie�y review other approa
hes thathave been used for sparsity in Se
tion 4.5 and end the 
hapter with 
on
lusions in Se
-tion 4.6.4.2 Sparsity in the Latent Variable FrameworkThis se
tion introdu
es the 
on
ept of sparsity. We �rst motivate the need for sparsity inthe latent variable framework. We then show how it 
an be imposed in the framework andderive inferen
e algorithms.4.2.1 The Need for SparsityConsider a real signal, su
h as a spee
h utteran
e. It is reasonable to expe
t that su
h realsignals exhibit 
omplex spe
tral stru
ture. The number of 
omponents required to modelthe stru
ture 
ould potentially be very large. However, the latent variable framework asintrodu
ed in the last 
hapter has an upper bound on the number of basis 
omponentsthat one 
an extra
t. This limit is given by the dimensionality of the input ve
tors, whi
hin the 
ase of spe
trograms, is provided by the number of frequen
y bins. This is a 
lear
on
eptual limitation, sin
e the model is restri
ted by the representation used (whi
h is



62an arbitrary 
hoi
e, not grounded in any theoreti
al 
onsiderations) for the signal beinganalyzed.
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Figure 4·1: Illustration of multiple solutions in an over
omplete 
ode offour basis 
omponents. The basis 
omponents are marked A, B, C and D. Atypi
al data point `+' 
an be expressed as a linear 
ombination of the basis
omponents in several ways as eviden
ed by the multiple di�erent 
onvexhulls in whi
h it lies. The 
onvex hulls are given by ABCD, ABC and ABD.The main problem in extra
ting an over
omplete set of basis 
omponents is indeter-mina
y. There are multiple ways in whi
h one 
an 
ombine an over
omplete set of basis
omponents to approximate any parti
ular data distribution. This is best illustrated byutilizing the arti�
ial dataset �rst presented in Se
tion 3.4. An over
omplete set of fourbasis 
omponents are shown in Figure 4·1, 
orresponding to the points A, B, C, and D. The�gure illustrates the various ways in whi
h the basis ve
tors 
an be 
ombined to representa typi
al data point. These basis points are 
apable of representing the data distributionsas the data falls within the 
onvex hull de�ned by these points. However, there are manydi�erent ways in whi
h any given data point 
an be represented using these four basis
omponents.



63To over
ome this problem of indetermina
y, additional 
onstraints have to be imposedduring parameter estimation, to lead to a unique solution. The 
on
ept of sparsity is onesu
h 
onstraint that has been widely used. The goal is to �nd a set of 
omponents su
hthat the mixture weights by whi
h the basis 
omponents are multiplied prior to being addedto produ
e a datum are �sparse;� i.e., few of the weights are large. Adding a penalty tosolutions that require few non-zero weights will favor a sparse solution over another solutionthat also 
an represent a parti
ular datum, but requires more non-zero weights. Figure 4·2illustrates a a sparse over
omplete 
ode and 
ompares the sparse 
ode with a �dense� or
ompa
t 
ode.

Figure 4·2: Reprodu
ed from Asari et al. (2006), Figure 1, with the per-mission of authors. (A) Three non-orthogonal feature ve
tors in a 2D spa
e
onstitute an over
omplete representation, o�ering many possible ways torepresent a data point with no error. (B) A dense representation that weightsall features roughly evenly. (C) A sparse representation that invokes onlytwo features. (D) The sparse and dense representations 
ompared.



644.2.2 Entropy as a Sparsity Metri
Di�erent metri
s have been proposed to measure sparsity. These metri
s are used as 
on-straints during model parameter estimation to favor sparse 
oding. These 
onstraints 
or-respond to di�erent 
ost fun
tions that, during estimation, penalize the obje
tive fun
tion
orresponding to the solution requiring more non-zero weights, thereby favoring equally�good� solutions for re
onstru
ting a datum that requires fewer non-zero weights. Considera distribution θ for whi
h a sparse 
ode is desired. Some approa
hes use variants of the Lpnorm of θ as the 
ost fun
tion to favor sparse 
oding (Hoyer, 2004) while other approa
hesuse various approximations of entropy of θ as the 
ost fun
tion (Field, 1994). Instead ofusing approximations for entropy, we dire
tly 
al
ulate the entropy itself as a sparsity met-ri
 and seek to redu
e this metri
 at the same time that we �nd a solution that models thedata. Figure 4·3 illustrates how adding a 
onstraint that favors redu
ing the entropy of themixture weights leads to a unique solution.
Simplex Boundary
Data Points
Basis Vectors

(001)

(010)(100) A B

C

DE

F G
Enclosing triangles for ’+’:
ABG, ABD, ABE, ACG,
ACD, ACE, ACFFigure 4·3: Illustration of sparsifying mixture weights in an over
omplete
ode. A-G represent 7 basis 
omponents. The `+' represents a typi
aldata point. This datum 
an be a

urately represented by any set of threeor more bases that form an en
losing polygon; moreover, there are manysu
h polygons 
onsistent with the under
onstrained nature of the problem.However, if the goodness of a solution weights the number of bases used toen
lose `+' to be minimal, favoring solutions that use fewer non-zero weights,only the 7 en
losing triangles listed may be optimal solutions. By furtherimposing the restri
tion that the entropy of the mixture weights is to beminimized, only one triangle is obtained as the unique, optimal en
losure.There is another advantage of using entropy as a sparsity metri
. In information theory,entropy is a measure of the information en
oded by a distribution. Redu
ing the entropyof the mixture weights results in in
reased entropy of the basis ve
tors (in
reasing the in-



65formation they 
onvey). Sparse-
oding, where entropy of the mixture weights is redu
ed,for
es more information to be en
oded by the basis 
omponents, making them more �ex-pressive.� Thus, using entropy as a metri
 provides an expli
it way to 
ontrol the amountof information present in the basis 
omponents versus in the mixture weights.4.2.3 Parameter EstimationThe 
on
ept of entropi
 prior has been used in the maximum entropy literature (Jaynes,1982; Skilling, 1989) to enfor
e sparsity. Given a probability distribution θ, the entropi
prior is de�ned as
Pe(θ) ∝ e−αH(θ), (4.1)where H(θ) = −

∑

i θi log θi is the entropy of the distribution and α is a weighting fa
tor.Positive values of α favor distributions with lower entropies while negative values of α favordistributions with higher entropies. Imposing this prior with positive α during maximuma posteriori estimation is a way to minimize entropy, whi
h will result in a sparse θ distri-bution. The distribution θ 
ould 
orrespond to the basis 
omponents P (f |z), the mixtureweights Pt(z), or both.We use the EM algorithm to derive update equations for the parameters of the model.Let us examine the 
ase in whi
h both P (f |z) and Pt(z) employ the entropi
 prior9. Themodel is given by the equation
Pt(f) =

∑

z

P (f |z)Pt(z).The set of parameters to be estimated are P (f |z) and Pt(z) i.e. Λ = {P (f |z), Pt(z)}.We impose an a priori probability on the parameters given by
P (Λ) ∝

∏

z

eᾱ
P

f P (f |z) log P (f |z)
∏

t

eβ̄
P

z Pt(z) log Pt(z),9In this thesis, we only 
onsider the 
ase in whi
h we impose a sparsity 
onstraint on the mixtureweights Pt(z). However, we present the 
ase where both the basis 
omponents and mixture weights havethe entropi
 prior to keep the exposition general.



66where ᾱ and β̄ are parameters indi
ating the relative importan
e and sign of the sparsitydesired on P (f |z) and Pt(z), respe
tively. Ignoring 
onstant terms, the log-prior (logarithmof the above a priori probability) 
an be written as
log P (Λ) = ᾱ

∑

z

∑

f

P (f |z) log P (f |z) + β̄
∑

t

∑

z

Pt(z) log Pt(z), (4.2)We use maximum a posteriori estimation and use the EM algorithm.For the E-step, we 
ompute the a posteriori probability of the latent variable as before:
Pt(z|f) =

Pt(z)P (f |z)
∑

z Pt(z)P (f |z)
. (4.3)In the M-step, instead of maximizing the log-likelihood, we maximize the log-posterior(the logarithm of the a posteriori probability of the model parameters). The log-posteriorto be maximized is given by

L = D +R

= Ez̄|f̄ ;Λ log P (f̄ , z̄) + log P (Λ), (4.4)where D = Ez̄|f̄ ;Λ log P (f̄ , z̄) is the expe
ted log-likelihood, R = log P (Λ) is the log-prior,and f̄ and z̄ represent the set of all observations of f and z in the draws that generated alldata ve
tors.Let us 
onsider the log-likelihood term D �rst. The 
omplete data likelihood 
an bewritten as
P (f̄ , z̄) ∝

∏

j,t

Pt(fj , zj) =
∏

j,t

Pt(zj)P (fj |zj), (4.5)where fj and zj are the observed values of variables f and z in the j-th draw. Hen
e, we
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an write the fun
tion D as (ignoring the 
onstant terms)
D = Ez̄|f̄ ;Λ

∑

j,t

log Pt(fj , zj)

=
∑

j,t

Ezj |fj ;Λ log Pt(fj , zj)

=
∑

j,t

Ezj |fj ;Λ log Pt(zj) +
∑

j,t

Ezj |fj ;Λ log P (fj |zj)

=
∑

j,t

∑

z

P (z|fj) log Pt(z) +
∑

j,t

∑

z

P (z|fj) log P (fj |z). (4.6)In the above equation, we 
an 
hange the summation over draws j to a summation overfeatures f by a

ounting for how many times f was observed, i.e. the f -th entry in theobserved data ve
tor10. The expe
ted log-likelihood 
an now be written as
D =

∑

t

∑

f

γVft

∑

z

Pt(z|f) log Pt(z) +
∑

t

∑

f

γVft

∑

z

Pt(z|f) log P (f |z). (4.7)The se
ond term R in equation (4.4) 
orresponding to the log-prior is given by equa-tion (4.2). Hen
e, we 
an write the fun
tion L as (ignoring the 
onstant terms)
L = D +R

=
∑

t

∑

f

γVft

∑

z

Pt(z|f) log Pt(z) +
∑

t

∑

f

γVft

∑

z

Pt(z|f) log P (f |z)

+ᾱ
∑

z

∑

f

P (f |z) log P (f |z) + β̄
∑

t

∑

z

Pt(z) log Pt(z). (4.8)Here, γ is a parameter that weights the data while ᾱ and β̄ are parameters weighting thepriors.In order to take 
are of the normalization 
onstraints, the above equation must beaugmented by appropriate Lagrange multipliers τt and ρz,
Q = L+

∑

t

τt

(

1−
∑

z

Pt(z)
)

+
∑

z

ρz

(

1−
∑

f

P (f |z)
)

. (4.9)10Sin
e observed data is modeled as a histogram, entries should be integers. To a

ount for this, weweight the data by an unknown s
aling fa
tor γ, without loss of generality.



68Maximization of Q with respe
t to Pt(z) and P (f |z) leads to the following sets ofequations
∑

t VftPt(z|f)

P (f |z)
+ α + α log P (f |z) + ρz = 0, (4.10)

∑

f VftPt(z|f)

Pt(z)
+ β + β log Pt(z) + τt = 0, (4.11)where α = ᾱ/γ and β = β̄/γ. We have repla
ed two parameters weighting the data andprior separately (γ and ᾱ for equation (4.10), γ and β̄ for equation (4.11)) by a singleparameter that weights the prior with respe
t to the data (α and β in equations (4.10) and(4.11) respe
tively).Now, 
onsider solving for Pt(z). Equation (4.11) 
an be written as

ωz

Pt(z)
+ β + β log Pt(z) + τt = 0, (4.12)where ωz represents∑f VftPt(z|f). The above set of simultaneous trans
endental equationsfor Pt(z) 
an be solved using the Lambert's W fun
tion (Corless et al., 1996) as proposedby Brand (1999a).Lambert's W fun
tion is an inverse mapping satisfying

W(y)eW(y) = y =⇒ logW(y) +W(y) = log y.As shown by Brand (1999a), we 
an set y = ex and work ba
kwards towards equation (4.12)as follows,
0 = −W(ex)− logW(ex) + x

=
−1

1/W(ex)
− logW(ex) + x + log q − log q

=
−q

q/W(ex)
+ log q/W(ex) + x− log q.Setting x = 1 + τt/β + log q and q = −ωz/Pt(z), the above equation simpli�es to equa-



69tion (4.12):
0 =

ωz/β

−(ωz/β)/W(−ωze1+τt/β/β)
+ log

−ωz/β

W(−ωze1+τt/β/β)

+1 +
τt

β

=
ωz/β

Pt(z)
+ log Pt(z) + 1 +

τt

β
,whi
h implies that

P̂t(z) =
−ωz/β

W(−ωze1+τt/β/β)
, (4.13)where equations (4.12) and (4.13) form a set of �xed-point iterations for τt, and thus the M-step for �nding Pt(z). Brand (1999a) points out that these equations typi
ally 
onverge in2-5 iterations. Brand (1999b) provides details of 
omputation of the Lambert'sW fun
tion.

P (f |z) 
an be found by solving the set of trans
endental equations given by equa-tion (4.10) using Lambert's W fun
tion. It 
an be estimated as
P̂ (f |z) =

−ξ/α

W(−ξe1+ρz/α/α)
, (4.14)where ξ is ∑t VftPt(z|f). Equations (4.10) and (4.14) form a set of �xed-point iterationsand 
orrespond to the M-step updates for P (f |z).4.2.4 ExamplesConsider a simple musi
 
lip shown by the magnitude spe
trogram in Figure 4·4. Thisexample 
an be used to show how sparsity 
an be useful in analyzing sounds. The musi
 
lip
onsists of three notes played su

essively followed by a 
hord whi
h is 
omposed of all thethree notes. Learning three basis 
omponents by performing latent variable de
ompositionon the spe
trogram provides results as shown in Figure 4·5(a). The three 
omponents
orrespond to the three notes present in the 
lip. The mixture weight 
orresponding toany parti
ular basis 
omponent is high in all those time frames where that note is �on.� Inthe last segment of the 
lip 
orresponding to the 
hord, mixture weights of all the three
omponents have roughly equal values indi
ating that all the three notes are present.
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Figure 4·4: Spe
trogram of a piano musi
 
lip. It represents three notesplayed su

essively followed by a 
hord whi
h is 
omposed of the three notes.The abs
issa represents time and the ordinate represents frequen
y.
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(a) Basis Components P (f |z) (left) and Mixture Weights Pt(z) (right) learned with no sparsity.
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(b) Basis Components P (f |z) (left) and Mixture Weights Pt(z) (right) learned with no sparsity.
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(
) Basis Components P (f |z) (left) and Mixture Weights Pt(z) (right), learned with sparsity imposedon Pt(z).Figure 4·5: (a) and (b) show 3 and 4 basis 
omponents learned fromthe spe
trogram of Figure 4·4. Also shown are the 
orresponding mixtureweights. (
) shows 4 basis 
omponents and 
orresponding mixture weightsthat were learned by imposing sparsity on the mixture weights.



72Now, suppose one would like to have a de
omposition in whi
h, in addition to the indi-vidual notes, the 
hord is also extra
ted as a separate basis 
omponent. This is intuitivelyappealing, sin
e a 
ombination of notes that are harmoni
 (as is the 
ase in this exam-ple) is per
eptually re
ognized as a distin
t entity rather than as a 
ombination of distin
tsounds. Figure 4·5(b) shows the result of latent variable de
omposition where four basis
omponents were extra
ted. Noti
e that the additional 
omponent, instead of modeling the
hord, represents the transitions between the notes. The solution in whi
h the additional
omponent 
orresponds to the 
hord is a feasible solution but is no more likely than thesolution shown in the �gure.Addition of the sparsity (entropi
) prior on the mixture weights Pt(z) provides a way toextra
t the 
hord as a separate 
omponent. The sparsity 
onstraint implies that mixtureweights 
orresponding to few basis 
omponents have values that are signi�
antly above zero.If the value of the sparsity parameter 
hosen is appropriately high, this 
onstraint for
esonly one of the basis 
omponents to be �a
tive� in any parti
ular time frame. Thus, ea
hof the basis 
omponents that are learned end up representing the spe
tral stru
ture in thetime frames in whi
h 
orresponding mixture weight values are high. This is illustrated bythe results shown in Figure 4·5(
) where the four 
omponents 
orrespond to the three notesand the 
hord. The sparsity 
onstraint makes su
h a solution more likely when 
omparedto all the other feasible solutions.Another example that illustrates the e�e
t of sparsity is shown in Figure 4·6. The modelwas used to analyze handwritten digits from the USPS Handwritten Digits database11.Twenty-�ve basis 
omponents were extra
ted by analyzing 1000 di�erent instan
es for everydigit, with the additional 
onstraint that the mixture weights be sparse. Ea
h instan
eof a digit was given by the pixel intensities as a 16 × 16 matrix. We unwrapped ea
hmatrix and treated it as a 256-dimensional ve
tor, representing the set of 1000 ve
tors asa 256× 1000 matrix V. The matrix V was used as the input to the algorithm. Figure 4·6shows the extra
ted 
omponents for digits �2� and �3.� Noti
e the qualitative di�eren
e in11from http://www.
s.toronto.edu/∼roweis/data.html.
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Basis Components Mixture Weights

Data Vector

Basis Components Mixture Weights

Data Vector

Figure 4·6: Latent Variable Model applied on the USPS Handwritten Dig-its database, with the additional 
onstraint that mixture weights be sparse.Twenty-�ve basis 
omponents were learned from the data set. Basis 
ompo-nents wereextra
ted for the digits �2� (top) and �3� (bottom), shown in theleft panels as 5× 5 tiles. The smaller panels on the right show the mixtureproportions with whi
h the basis 
omponents 
ombine to approximate theinput ve
tors. In this example, we 
onstrained mixture weights to be sparseby imposing a sparsity parameter of 0.2 (β = 0.2).
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β = 0 β = 0.05

β = 0.5 β = 0.2

Figure 4·7: Twenty-�ve basis 
omponents learned from training data for
lass �3� with in
reasing sparsity parameters on the mixture weights. Thesparsity parameter was set to (from top-left in 
lo
kwise dire
tion) 0, 0.05,0.2, and 0.5, respe
tively. In
reasing the sparsity parameter for the mixtureweights produ
es basis 
omponents that are more representative of instan
esof the input set rather than part-like features of the inputs.



75the extra
ted 
omponents 
ompared to those on Figure 3·6, demonstrating the qualitative
hange in the basis 
omponents when sparsity 
onstrains the solution.4.3 Sparse Over
omplete Coding: GeometryIn Se
tion 3.4, we used a data set of 400 3-dimensional multinomials to understand andvisualize the geometry of the latent variable model. And in the previous se
tion, we havederived a method to impose sparsity in the framework. We use the same dataset to un-derstand how sparsity makes a di�eren
e in the model. Figure 4·8 reprodu
es the dataset,where ea
h multinomial distribution is represented as a point in the Standard 2-Simplex.

 

 

Simplex Boundary
Data Points

(100) (010)

(001)

DATA

Figure 4·8: 400 3-dimensional multinomial distributions represented in theStandard 2-Simplex.As mentioned earlier, the problem of over
omplete 
odes is indetermina
y if sparsity isnot imposed. One 
an still arrive at one of the many feasible solutions. Figure 4·9 showsthe e�e
t of in
reasing the number of basis 
omponents in an over
omplete 
ode withoutimposing sparsity. As the number of basis 
omponents in
reases, the 
onvex hulls formedby the bases �expand� around the data. This larger set of basis 
omponents 
an a

urately



76

(001)

(010)

(100)

3 Basis Vectors

(100)

(010)

(001)
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Figure 4·9: Illustration of the e�e
t of number of basis ve
tors on thelatent variable model applied on 3-dimensional distributions. Points arerepresented within the Standard 2-Simplex given by {(001), (010), (100)}.The model was applied on the data set of 400 points shown in Figure 4·8 toextra
t 3, 4, 7, and 10 basis 
omponents. Ea
h 
ase 
onsisted of 20 repeatedruns and the resulting 
onvex hulls formed by the basis 
omponents wereplotted as shown in the panels from left to right. Noti
e that in
reasing thenumber of basis ve
tors enlarges the sizes of 
onvex hulls.
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Sparsity Param = 0.01
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Figure 4·10: Illustration of the e�e
t of sparsity on the latent variablemodel applied on 3-dimensional distributions. Points are represented withinthe Standard 2-Simplex given by {(001), (010), (100)}. The latent variablemodel was applied on data shown in Figure 4·8 to extra
t 7 basis 
ompo-nents with di�erent values of the sparsity parameter on the mixture weights.There were 20 repeated runs for a given value of the sparsity parameter andthe resulting 
onvex hulls are plotted as shown. In
reasing the sparsity ofmixture weights makes the resulting 
onvex hulls more 
ompa
t. The 
asewhen no sparsity was imposed was shown in Figure 4·9.
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Sparsity Param = 0.3Figure 4·11: Illustration of the e�e
t of sparsity on the latent variablemodel applied on 3-dimensional distributions. Points are represented withinthe Standard 2-Simplex given by {(001), (010), (100)}. The latent variablemodel was applied on data shown in Figure 4·8 to extra
t 10 basis 
ompo-nents with di�erent values of the sparsity parameter on the mixture weights.There were 20 repeated runs for a given value of the sparsity parameter andthe resulting 
onvex hulls are plotted as shown. In
reasing the sparsity ofmixture weights makes the resulting 
onvex hulls more 
ompa
t. The 
asewhen no sparsity was imposed was shown in Figure 4·9.



79represent the data but are less 
hara
teristi
 of the distribution of data points. In otherwords, the new set of basis 
omponents is less informative about the data set. Considerthe extreme 
ase where we have the set of 
orners of the 2-simplex as basis ve
tors. Theya

urately represent the data set but do not provide any information. This is be
ause they
an represent not just this dataset but any other data set with perfe
t a

ura
y.However, imposing sparsity on the mixing proportions gives us desirable properties.Figures 4·10 and 4·11 show that as the sparsity parameter is in
reased, 
onvex hulls formedby the basis 
omponents get more �
ompa
t� around the data. Sin
e few basis 
omponents
ontribute to any parti
ular data instan
e, they are more data-like, or in other words, pro-vide more holisti
 representations of the input spa
e. Figure 4·7 shows 25 basis 
omponentsextra
ted from hand-written examples for digit �3.� The 
omponents be
ome more repre-sentative of �3� as the mixture weights be
ome more sparse. In terms of how informationis en
oded about the distribution of the data, in
reasing sparsity of the mixture weightspushes information from the mixture weights to the basis 
omponents. This o

urs be
auseredu
ing the entropy of the mixture weights in
reases the entropy of the basis 
omponentsin the model (see Figure 4·13). This pushes the basis 
omponents from the 
orners of thestandard simplex towards the 
enter. In the extreme 
ase in whi
h the set of basis 
om-ponents is given by the entire data set itself, all the information is en
oded by the basis
omponents, with the mixture weights providing no information.4.4 Sparse De
omposition for Sour
e SeparationIn this se
tion, we explore how sparse latent variable de
omposition 
an be used for sour
eseparation with a pro
edure similar to that presented in Se
tion 3.5. The main di�eren
eis in the training stage, where we learn over
omplete sets of basis 
omponents by imposingsparsity on the mixture weights. The separation stage remains the same, where using thelearned basis 
omponents, the remaining parameters of the mixture spe
trogram model areestimated using a maximum likelihood formulation.As before, let V represent the magnitude spe
trogram of a mixture signal. Let Ls



80represent the magnitude spe
trogram of the training re
ording for the s-th sour
e, where
Ls

ft denotes the energy in frequen
y bin f at time frame t.4.4.1 Training StageIn the training stage, we learn basis 
omponents, denoted by Ps(f |z), for ea
h sour
e. Themodel is given by equation (3.15).For a given sour
e s, the parameters Pt(z) and Ps(f |z) are initialized randomly andreestimated through iterations of the equations derived in Se
tion 4.2.3. Mixture weightsare estimated with a positive entropi
 prior imposed on them. To summarize, the updateequations 
an be written as
Pt(z|f) =

Pt(z)Ps(f |z)
∑

z Pt(z)Ps(f |z)
, (4.15)

Ps(f |z) =

∑

t Pt(z|f)Ls
ft

∑

t

∑

f Pt(z|f)Ls
ft

, (4.16)
0 =

ωz

Pt(z)
+ β + β log Pt(z) + τt, (4.17)

Pt(z) =
−ωz/β

W(−ωze1+τt/β/β)
, (4.18)where β is the sparsity parameter and ωz represents ∑f Ls

ftPt(z|f).A given training iteration in
ludes one update ea
h of equations (4.15) and (4.16), and2-5 iterations of the �xed-point equation pair for τt, given by equations (4.17) and (4.18).Only the Ps(f |z) values are used in re
onstru
tion; the rest of the terms are dis
arded.Figure 4·12 shows examples of a sparse over
omplete set of basis 
omponents learned fora female talker. Examples of a 
ompa
t 
ode, found when sparsity is not imposed on themixture weights, are also shown for 
omparison. The sparse over
omplete 
omponent solu-tions exhibit harmoni
 stru
ture similar to what is observed in spee
h signals. Figure 4·13illustrates how the average entropies of basis 
omponents and mixture weights vary withdi�erent values of the sparsity parameter β. Redu
ing the entropies of mixture weightsin
reases the entropy of basis ve
tors. Thus, empiri
al eviden
e shows that a set of sparseover
omplete basis 
omponents 
an also be obtained by having a negative entropi
 prior



81on the basis 
omponents. This observation, while interesting, is beyond the s
ope of thisthesis, and is left for future work.4.4.2 Separation StageTo separate the mixture spe
trogram, we use the model presented in Se
tion 3.5.2. Theoverall distribution underlying the spe
tral ve
tor for the t-th analysis frame of the mixturespe
trogram is given by
Pt(f) =

∑

s

Pt(s)
∑

z∈{zs}

Pt(z|s)Ps(f |z), (4.19)where Pt(s) is the a priori probability of the s-th sour
e and {zs} represents the set ofvalues that z 
an take for that sour
e.We do not impose sparsity during separation. Sparsity is used in the training stageto ensure that a large set of basis 
omponents is found that 
an 
hara
terize the sour
esin the training set. In the separation stage, we utilize these learned basis 
omponentsto approximate the mixture spe
trogram. As derived in Se
tion 3.5.3, we estimate theparameters of the model by iterations of equations (3.39), whi
h are reprodu
ed below:
Pt(s, z|f) =

Pt(s)Pt(z|s)Ps(f |z)
∑

s Pt(s)
∑

z∈{zs}
Pt(z|s)Ps(f |z)

Pt(s) =

∑

z∈{zs}

∑

f Pt(s, z|f)Vft
∑

s

∑

z∈{zs}

∑

f Pt(s, z|f)Vft

Pt(z|s) =

∑

f Pt(s, z|f)Vft
∑

z∈{zs}

∑

f Pt(s, z|f)Vft
.The spe
trogram of the s-th sour
e 
an be estimated as

V̂ft(s) =
Pt(s)P (f |s)

∑

s Pt(s)P (f |s)
Vft, (4.20)where Pt(f |s) is given by

Pt(f |s) =
∑

z∈{zs}

Pt(z|s)Ps(f |z). (4.21)
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Latent Variable Index(b) Sparse Over
omplete CodeFigure 4·12: (a) A subset of 80 basis ve
tors from a total of 160 basis
omponents learned for a female talker. Sparsity was not imposed on themixture weights during estimation. (b) A subset of 80 basis 
omponents outof a total of 1000 learned basis 
omponents for the same talker. Sparsitywas imposed (β = 0.3) on the mixture weights during estimation. Darkervalues of the grays
ale 
orrespond to higher probabilities.
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Figure 4·13: Illustration of how enfor
ing sparsity on the mixture weights
hanges the average entropy of the mixture weights (top panel) and thebasis 
omponents (bottom panel). Average entropy was 
al
ulated duringthe training stage when 750 (red squares) and 1000 (blue triangles) basis
omponents were learned. Noti
e that de
reasing entropy of the mixtureweights is equivalent to in
reasing the entropy of the basis ve
tors. Using aset of over
omplete basis 
omponents 
an be 
onsidered more �expressive�in the information-theoreti
 sense.



84On
e the values are estimated for all f and t, the phase of the short-time Fourier transformof the mixed signal is 
ombined with the estimated magnitude spe
trogram. An inverseFourier transform is performed to obtain the time domain re
onstru
tion of the sour
e.4.4.3 Separation ResultsExperiments evaluated the separation performan
e for the proposed method on syntheti
mixtures. Experiments were done on the same set of talkers used in Se
tion 3.5.4. We usedsix pairs of talkers 
hosen from the Wall Street Journal (WSJ) database: two pairs werefemale/male, two were male/male and two were female/female.A set of 134 utteran
es 
omprising approximately 16 minutes of spee
h was sepa-rated as training data for ea
h talker. Signals were sampled at 16 kHz and short-termFourier transforms were generated with an FFT point size of 1024, hop size of 256 be-tween frames, and a Hanning window. The dimensionality of ea
h spe
tral ve
tor was 513(F = 513). For the over
omplete 
ase, 750 or 1000 basis 
omponents were learned fordi�erent values of the sparsity parameter β. The set of values used for β is given by the set
{0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.9}.For a given pair of talkers, mixed signals were obtained by digitally adding di�erentpairs of test signals. The length of the mixed signal was set to the shorter of the twosignals. The 
omponent signals were all normalized to 0 mean and unit varian
e prior toaddition, resulting in 0 dB SNR for ea
h talker. A set of �ve mixed re
ordings were obtainedas test 
ases for every talker pair 
onsidered. Figure 4·14 shows example spe
trograms ofre
onstru
tions from a mixture with male and female talkers. In this 
ase, a sparsityparameter of β = 0.3 was used in the training to estimate an over
omplete set of 1000basis 
omponents. For evaluating the quality of separation, SNR (equation 3.44) and SER(equation 3.45) introdu
ed in Se
tion 3.5.4, were 
omputed.Figures 4·15 and 4·16 illustrate the e�e
t of 
hanging the sparsity parameter on separa-tion. Experiments were 
ondu
ted on two test mixture signals belonging to a Male/Femaletalker pair. Di�erent values of the sparsity parameter was used during the training phase.
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Mixture

Female − Original

Female − Reconstruction

Male − Original

Male − Reconstruction

Figure 4·14: Result of a separation experiment for a male/female talkerpair, with 1024 point FFT size and 1000 basis 
omponents (β = 0.3). TheSNR and SER improvements for the female were 8.1208 dB and 5.7684 dBrespe
tively. For the male, improvements were 8.1320 dB and 5.7681 dB.
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Figure 4·15: Results of separation experiments that illustrate the e�e
tof the value of the mixture weight sparsity parameter β on the quality ofseparation. Over
omplete sets of 750 basis 
omponents were extra
ted withthe sparsity (entropi
) prior and separation (Male/Female talker pair) wasperformed. The panels display the average SNR and SER values of the re-
onstru
ted signals. The top and bottom panels 
orrespond to two di�erenttest mixtures.
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Figure 4·16: Results of separation experiments that illustrate the e�e
tof the value of the mixture weight sparsity parameter β on the quality ofseparation. Over
omplete sets of 1000 basis 
omponents were extra
tedwith the sparsity (entropi
) prior and separation (Male/Female talker pair)was performed. The panels display the average SNR and SER values ofthe re
onstru
ted signals. The top and bottom panels 
orrespond to twodi�erent test mixtures.



88The SNR/SER improvements of the separated signals are plotted in the �gures. There is ageneral trend for separation to improve with in
reasing values of the sparsity parameter.
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Figure 4·17: Talker separation evaluation results in terms of SNR (Sig-nal/Noise Ratio) improvements (in dB) for the sparse over
omplete 
ode(in Blue) and for the 
ompa
t 
ode (in Red). The Y-axis 
orresponds tothe SNR improvement for the �rst talker while the X-axis represents theimprovement for the se
ond talker. Ea
h point 
orresponds to a parti
ularexperiment. Di�erent symbols represent di�erent talker pairs in the mix-tures. Ea
h point in Panel (D) is the average of the 
orresponding pointsin the �rst three panels. Noti
e that the sparse 
ode 
onsistently performsbetter than the 
ompa
t 
ode.Figures 4·17 and 4·18 summarize results of experiments 
omparing performan
e for thesparse over
omplete 
ode and the 
ompa
t 
ode. The 
ompa
t 
ode 
orresponded to aset of 100 basis 
omponents estimated without the imposition of sparsity, while the sparse
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Figure 4·18: Talker separation evaluation results in terms of SER (SpeakerEnergy Ratio) improvements (in dB) for the sparse over
omplete 
ode (inBlue) and for the 
ompa
t 
ode (in Red). The Y-axis 
orresponds to the SERimprovement for the �rst talker while the X-axis represents the improvementfor the se
ond talker. Ea
h point 
orresponds to a parti
ular experiment.Di�erent symbols represent di�erent talker pairs in the mixtures. Ea
hpoint in Panel (D) is the average of the 
orresponding points in the �rstthree panels. Noti
e that the sparse 
ode 
onsistently performs better thanthe 
ompa
t 
ode.



90over
omplete 
ode used a set of 1000 basis ve
tors estimated with a sparsity parameter of
β = 0.7. For every talker pair, separation was evaluated using both the sparse over
om-plete 
ode and the 
ompa
t 
ode for �ve di�erent mixtures. Figure 4·17 plots the SNRimprovements of the two re
onstru
ted signals against ea
h other, while Figure 4·18 plotsthe speaker energy ratios. Every point in the �gures 
orresponds to the result of one ex-periment. Points in blue 
orrespond to results with the sparse 
ode while points in red
orrespond to results from the 
ompa
t 
ode. All the results for a given talker pair arerepresented by the same symbol; di�erent symbols represent di�erent talker pairs. Resultsshow that the sparse 
ode performs signi�
antly and 
onsistently better than the 
om-pa
t 
ode, for both metri
s. A few examples of the separated signals 
an be obtained athttp://
ns.bu.edu/∼mvss/
ourses/spee
hseg/.4.5 Other approa
hes to SparsityFinally, this se
tion presents a brief overview of other approa
hes to sparsity that havebeen used in the literature. Sparsity has been used in te
hniques that model inputs as alinear 
ombination of bases (kernels) and mixture weights. Two groups of te
hniques arepresented: approa
hes motivated by neural 
oding theory and approa
hes motivated byma
hine learning appli
ations.4.5.1 Neural Coding TheorySparse 
oding is thought to be a fundamental prin
iple driving biologi
al sensory and neuralsystems to en
ode and pro
ess sensory information (Kanerva, 1988; Field, 1994; Olshausenand Field, 1996). Several theoreti
al, 
omputational and experimental studies suggest thatneurons en
ode sensory information using a small number of a
tive neurons at any givenpoint in time (Olshausen and Field, 2004) as a way to minimize the metaboli
 energy or
ost of en
oding information. Furthermore, sensory systems are thought to transform theinput into a 
ode that redu
es the redundan
y among the elements of the input stream, fol-lowing the ideas of Attneave (1954) and Barlow (1959, 1961), who argue that the prin
iples



91information theory 
an be used to understand per
eptual pro
esses.Consider basis de
omposition models that have been proposed to understand sensory
oding (Olshausen, 2001; Lewi
ki, 2002; Smith and Lewi
ki, 2006). The data ve
tor v (orthe underlying generative distribution in the 
ase of a latent variable model) is approximatedas Wh, where the 
olumns of W are basis 
omponents and the elements hi of the ve
tor hare the mixture weights. In this 
ontext, this goal of e�
ient 
oding is equivalent to �ndinga set of basis ve
tors that forms a 
omplete 
ode (i.e., spans the input spa
e) and resultsin mixture weights that are as statisti
ally independent as possible, given an ensemble ofinputs. One way of a
hieving this, as suggested by Field (1994), is to have a representationals
heme in whi
h only a few (out of a large population) of the basis 
omponents are requiredto explain any parti
ular data ve
tor. Su
h a representational s
heme is referred to asa sparse 
ode. As Olshausen and Field (1996) explain, the existen
e of any statisti
aldependen
ies among a set of variables hi may be dis
erned whenever the the joint entropyis less than the sum of the individual entropies (i.e., H(h1, h2, . . . , hr) <
∑

iH(hi), where
H is the entropy). A possible strategy for redu
ing statisti
al dependen
ies is to lowerthe individual entropies H(hi). Thus, redu
ing entropies of mixture weights is equivalentto having a sparse 
ode of basis 
omponents. In the approa
h presented in this 
hapter,entropy is redu
ed dire
tly by making use of the entropi
 prior on the mixture weights.4.5.2 Ma
hine LearningComponent-wise de
ompositions have played an important role in ma
hine learning appli-
ations. Popular te
hniques in
lude Prin
ipal Components Analysis (PCA), IndependentComponents Analysis (ICA), Non-negative Matrix Fa
torization (NMF), and others. Thesete
hniques express inputs as mixtures of data-dependent 
omponents that are learned dur-ing estimation. We fo
us on the latter te
hnique, NMF, and brie�y review resear
h workthat has attempted to extend NMF by in
orporating sparsity12.12Sparse extensions to PCA and ICA have been proposed: see (Zou et al., 2004) and (Zibulevsky andPearlmutter, 2001), respe
tively, for examples. Also, there is a body of literature on sparse representationof signals using a known di
tionary su
h as Fourier Bases or wavelets. These approa
hes use algorithmslike basis pursuit (Chen et al., 2001) and linear/quadrati
 programming (Donoho and Elad, 2003; Fu
hs,



92One of the important properties of NMF is that it usually produ
es a sparse represen-tation of the data. Lee and Seung (2001) point out that basis ve
tors of NMF used indistributed, yet sparse 
ombinations generate expressiveness in the re
onstru
tions. How-ever, as Hoyer (2004) points out, sparsity given by NMF is a side-e�e
t rather than a goalof the algorithm. This idea is supported by re
ent resear
h work aimed at developing sparseversions of NMF (Eggert and Korner, 2004; Heiler and S
hnorr, 2006; Hoyer, 2004; Morupand S
hmidt, 2006; Pas
aul-Montano et al., 2006). Hoyer (2004) introdu
ed an algorithmthat used a sparsity measure based on L1 and L2 norms and used this sparsity measure toderive a proje
ted gradient des
ent algorithm. Update equations were derived by minimiz-ing the Eu
lidean distan
e measure between data and the re
onstru
tion. Instead of the
L1 norm, Morup and S
hmidt (2006) and Eggert and Korner (2004) use a general fun
tionof the mixture weight matrix H̄ as a penalization term during estimation. They suggestthat any fun
tion with a positive derivative 
an be used as a penalty term. While Eggertand Korner (2004) use an obje
tive fun
tion based on the Eu
lidean distan
e to derive theupdates, Morup and S
hmidt (2006) use a KL-distan
e measure. However, neither paperproves that the update equations 
onverge to a solution. Pas
aul-Montano et al. (2006)take a di�erent approa
h by imposing a multipli
ative smoothing matrix during estimationthat enfor
es sparsity.While several other extensions exist, the studies mentioned above are representative ofthe various approa
hes. The review, however, does not 
onstitute an exhaustive survey ofsparse extensions to NMF.4.6 Con
lusionsThis 
hapter introdu
ed an important extension to the latent variable framework. Theframework from the previous 
hapter is limited by a restri
tion on the number of 
omponentsthat 
an be learned. Here, a learning formulation that addresses this limitation is derivedthat utilizes the notion of sparsity. An entropi
 prior in a maximum a posteriori formulation2004) for L1 norm minimization to obtain sparse representations. This work is beyond the s
ope of workreviewed in this thesis.



93enfor
es sparsity. A geometri
 interpretation of the model was presented using an arti�
ialdataset. Enfor
ing sparsity in the framework enables one to learn an over
omplete setof latent 
omponents whi
h 
an better 
hara
terize the data. Inferen
e algorithms werederived, and the framework was applied to the problem of sour
e separation. Experimentaleviden
e of the utility of su
h sparse over
omplete representations was presented. Thesparse de
omposition framework presented in this 
hapter and in the previous 
hapter isgeneral in its s
ope and appli
able to data other than a
ousti
 spe
trograms. For instan
e,Appendix B presents three appli
ations of the framework for analyzing image data.
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Chapter 5Con
lusions5.1 Thesis OverviewThe 
o
ktail party e�e
t is a 
hallenging problem from a 
omputational perspe
tive. Onefundamental question is whether it is possible to build a ma
hine 
apable of solving the
o
ktail party problem in a satisfa
tory manner. A simpler formulation of the questionwould be whether ma
hines 
an identify/separate sour
es from the a
ousti
 signal of anauditory s
ene. Many resear
hers have attempted to answer this question and build su
han automati
 system. This thesis represents a step towards that goal.The fo
us of this thesis is single-
hannel audio. There has been relatively little work onmodeling single-
hannel sounds 
ompared to the large body of work on blind-sour
e separa-tion with multiple input 
hannels. Dealing with just one signal of an a
ousti
 event insteadof many makes the problem formulation simpler, albeit harder sin
e there is mu
h less infor-mation with whi
h to work. Instead of building a system that solves a parti
ular problem,a framework for modeling single-
hannel audio was developed, based on probability theory,whi
h is the natural language to express un
ertainty.Spe
i�
ally, a latent variable model was proposed to model time-frequen
y representa-tions (eg. spe
trograms), where the energy in a time-frequen
y bin is treated as a histogram
ount of multiple draws. A variant of a spe
i�
 kind of latent variable model 
alled �la-tent 
lass models� were used, built on the prin
iple of lo
al independen
e (or the 
ommon
ause 
riterion). This a powerful formulation and has been used to extra
t latent stru
turefrom data in a variety of �elds su
h as so
ial s
ien
es (latent stru
ture analysis), analy-sis of text 
orpora (latent semanti
 analysis), and ma
hine learning (non-negative matrix



95fa
torization), among others. The formulation allowed the underlying distribution of ea
hspe
tral ve
tor to be modeled as a mixture of multinomial distributions. The 
omponentmultinomial distributions were assumed to be the same for all spe
tral ve
tors of a givensour
e, while the proportions with whi
h they 
ombined to generate a parti
ular ve
tordi�ered from frame to frame. The intuition was that these latent 
omponents are learnedso that they 
hara
terize the sour
e, and not individual spe
tral ve
tors. Chapter 3 pre-sented the theory and derived inferen
e algorithms to realize the approa
h. Experimentaleviden
e of the appli
ability of the proposed framework to single-
hannel audio pro
essing,by demonstrating sour
e separation and denoising experiments, was also presented.An important limitation of the proposed framework is that the number of latent 
om-ponents that 
an be extra
ted is limited by the dimensionality of the input spa
e, whi
h,in the 
ontext of time-frequen
y representations, is given by the number of frequen
y bins.The number of 
omponents required to model a 
omplex sound signal potentially 
ould belarge and should not be limited by the arbitrary 
hoi
e of representation. To over
ome thelimitation, an extension employing the 
on
ept of sparsity was presented (Chapter 4). Anentropi
 prior in a maximum a posteriori formulation was used to enfor
e sparsity. Loweringentropy of the mixture weights to extra
t an over
omplete set of basis 
omponents resultsin 
omponents that are more �expressive� and better 
hara
terize the data. The theory andinferen
e algorithms were presented in Chapter 4 along with experiments that providedeviden
e of the utility of su
h sparse-over
omplete representations for single-
hannel audiopro
essing appli
ations.To summarize, a probabilisti
 latent variable framework to model single-
hannel audi-tory signals was developed. The statisti
al framework makes the proposed models amenableto prin
ipled extensions and improvements. One su
h extension, in
orporating sparsity byemploying the entropi
 prior, demonstrated the advantages of the extension. More gen-erally, the extension demonstrates how the method 
an be extended to impose known orhypothesized stru
ture about the data by utilizing prior distributions on the parameters,thus pointing to other possible extensions of the general framework proposed.



965.2 Future WorkThe work presented in this thesis points to several extensions, some of whi
h are mentionedbelow.RepresentationHere, magnitude STFTs were used as inputs for evaluating the performan
e of the frame-work. As mentioned previously, one 
an utilize other representations and 
ompare perfor-man
e, in
luding TF representations with a log-frequen
y spa
ing (Brown, 1991) and TFrepresentations that are physiologi
ally motivated (Patterson et al., 1995; Irino and Pat-terson, 1997). The possibility of utilizing multidimensional generalizations of the frame-work (PLCA) to analyze more sophisti
ated representations of sound su
h as 
orrelograms(Slaney and Lyon, 1990) and higher-order spe
tral representations (Nikias and Petropulu,1993) 
an also be explored.The 
urrent work ignores the phase information of the sounds and the mixture duringanalysis. However, studies have shown that phase-spe
tra 
arry ri
h information that 
anbe utilized. For example, experiments by Alsteris and Paliwal (2005) suggest that magni-tude spe
tra 
an be uniquely re
onstru
ted from phase spe
tra, although re
overing phasefrom magnitude spe
tra is not feasible. Future work should explore how to utilize phaseinformation in the present framework. Other avenues in
lude extending the framework tohandle multimodal signals su
h as audio-visual signals.Model and TheoryThe probabilisti
 foundation of the proposed framework allows it to be easily extended.Spe
i�
ally, the framework allows one to impose stru
ture on the data by employing priordistributions. The methods proposed so far do not expli
itly model the stru
ture presentin the mixture weights in a way that 
aptures 
orrelations. In other words, the approa
hdoes not model how the basis 
omponents 
o-o

ur to generate a given spe
tral ve
tor. One
ould impose various priors to model this expli
itly. The most straightforward 
hoi
e for



97modeling multinomials is the Diri
hlet distribution (Minka, 2003) - a 
onjugate prior for themultinomial distribution (Blei et al., 2003). However, our experiments with the Diri
hletprior (Raj et al., 2006) did not result in signi�
ant improvements in sour
e separation.Other 
hoi
es for the prior in
lude mixture Diri
hlet distributions (Bouguila et al., 2004)and the logisti
 normal distribution (Blei and La�erty, 2006a). The next step would beto expli
itly model the time stru
ture by using hidden Markov models, or other dynami
models (e.g., Blei and La�erty, 2006b). Se
ondly, the latent 
omponents of the framework
an be modeled further in a hierar
hi
al way. One 
an use existing approa
hes su
h asGaussian mixtures to model ea
h 
omponent separately.In terms of the learning paradigm, the proposed framework is not dis
riminative in na-ture. For the sour
e separation problem that we have formulated as a supervised learningproblem, it would be more bene�
ial if the sour
e-dependent 
omponents 
an be learnedin a dis
riminative fashion. This would be espe
ially helpful in 
ases where the sour
espresent in the mixture exhibit similar spe
tral stru
ture. Preliminary experiments were
ondu
ted that expli
itly modeled stru
ture 
ommon to both sour
es of the mixture bylearning a separate set of �
ommon basis 
omponents� from training data of both sour
es.This approa
h yielded marginally better separation and is worthy of further resear
h. An-other approa
h is to enfor
e a prior during learning that in
reases the �distan
e� (in latentvariable spa
e) between the sets of 
omponents of the di�erent sour
es. One possibility isto use the 
on
ept of independen
e between sets of ve
tors, as has been done with Inde-pendent Subspa
e Analysis (Hyvarinen and Hoyer, 2000). If this approa
h is su

essful, itopens the possibility of utilizing the approa
h in an unsupervised framework to learn andseparate sour
es from the mixed signal, obviating the ne
essity of a training stage.Related to the above approa
h is the question of how sparse de
omposition relates toICA. Experiments and empiri
al results suggest that entropy manipulation of the param-eters in the proposed framework produ
es results similar to non-negative ICA algorithms(Plumbley, 2003). More theoreti
al analysis is required to fully understand the relationshipbetween these approa
hes. Another approa
h that is related to the work presented here



98is the emerging �eld of �
ompressed sensing� (Candes, 2006; Candes and Tao, 2006). Theidea is that it is possible to re
onstru
t signals a

urately from a number of samples whi
his far smaller than the signal resolution (e.g., re
onstru
ting an image from fewer numberof samples than the number of pixels in the image). Resear
h in this �eld utilizes sparsity,L1 norm minimization, and related 
on
epts. Methods of obtaining sparse 
odes presentedin this work might �nd appli
ability in 
ompressed sensing and should be explored further.And �nally, there is room for improvements and analyses of the inferen
e algorithmsused to �nd solutions. Spe
i�
ally, one 
an 
onsider alternatives and improvements of theEM algorithm, su
h as tempered EM, to improve the rate of 
onvergen
e and the qualityof the found solutions.Appli
ationsThis thesis fo
used on the appli
ation of the framework to audio sour
e separation problems.However, it 
an also be used for other appli
ations, in
luding musi
 trans
ription, auditorys
ene analysis, denoising, bandwidth expansion, speaker re
ognition, audio 
lassi�
ation,and more. We have also mentioned that the framework is more general and demonstratedits utility for three image pro
essing appli
ations. Appli
ations of the framework to an-alyze data in other domains, su
h as data-mining, brain imaging, text semanti
 analysis,radiology, 
hemi
al spe
tral analysis, et
., should be explored.5.3 Con
luding CommentsA general probabilisti
 framework for analyzing multi-dimensional non-negative data wasdeveloped. Future resear
hers should utilize this framework and extend it further to appli-
ations in other �elds and domains. Spe
i�
ally, this work may spawn resear
h e�orts tobuild a ma
hine with �auditory awareness� of its surroundings.
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Appendix ALatent Variable Model: Inferen
e for a MixtureSpe
trogramSe
tion 3.5.2 presented the latent variable model for a mixture spe
trogram. The model isgiven by equation (3.38), as reprodu
ed below:

Pt(f) =
∑

s

Pt(s)
∑

z∈{zs}

Pt(z|s)Ps(f |z), (A.1)where Pt(f) is the overall distribution underlying the t-th analysis frame of the mixturespe
trogram, Pt(s) is the a priori probability of the s-th sour
e, Ps(f |z) is the z-th ba-sis 
omponent for the s-th sour
e, Pt(z|s) is the 
orresponding mixture weight, and {zs}represents the set of values that z 
an take for that sour
e. Let V represent the observedmixture spe
trogram where Vft represents the energy in the f -th frequen
y bin and the
t-th analysis frame.In this appendix, we derive update equations for the parameters of the above model.There are two latent variables in the model � z re�e
ts the index of the latent basis ve
-tor and s re�e
ts the sour
e being 
onsidered. Following the approa
h presented in Se
-tion 3.3.2, we use a maximum likelihood formulation and derive Expe
tation Maximizationupdate rules for the parameters.For the E-step, we obtain a posteriori probability for the latent variables as

Pt(s, z|f) =
Pt(s)Pt(z|s)Ps(f |z)

∑

s Pt(s)
∑

z∈{zs}
Pt(z|s)Ps(f |z)

. (A.2)It should be understood that the variable z, when it o

urs in the terms Pt(z|s) and Ps(f |z),belongs to the set {zs} of latent variables that 
orresponds to the parti
ular sour
e s.



100In the M-step, we maximize the expe
ted 
omplete data log-likelihood. Let Λ representthe set of parameters of the model, i.e. Λ = {Pt(s), Ps(f |z), Pt(z|s)}. The expe
ted log-likelihood 
an be written as
L = E{s̄,z̄}|f̄ ;Λ log P (f̄ , z̄, s̄), (A.3)where f̄ , z̄ and s̄ represent the set of all observations of f , z and s in the draws thatgenerated the observed spe
tral ve
tors. The 
omplete data likelihood 
an be written as

P (f̄ , z̄, s̄) ∝
∏

j,t

Pt(fj , zj , sj) =
∏

j,t

Pt(sj)Pt(zj |sj)Psj
(fj |zj), (A.4)where fj , zj and sj are the observed values of f , z and s respe
tively in the j-th draw. Thefun
tion L 
an be written as (ignoring 
onstant terms)

L = E{s̄,z̄}|f̄ ;Λ

∑

j,t

log Pt(fj , zj , sj)

=
∑

j,t

E{sj ,zj}|fj ;Λ log Pt(fj , zj , sj)

=
∑

j,t

E{sj ,zj}|fj ;Λ log Pt(sj) +
∑

j,t

E{sj ,zj}|fj ;Λ log Pt(zj |sj)

+
∑

j,t

E{sj ,zj}|fj ;Λ log Psj
(fj |zj)

=
∑

j,t

∑

z,s

Pt(s, z|fj) log Pt(s) +
∑

j,t

∑

z,s

Pt(s, z|fj) log Pt(z|s)

+
∑

j,t

∑

z,s

Pt(s, z|fj) log Ps(fj |z).In the above equation, the summation over draws j 
an be 
hanged to a summationover frequen
ies f by a

ounting for how many times f was observed, i.e. the f -th entry



101of the observed spe
tral ve
tor Vft
13. The expe
ted log-likelihood 
an now be written as

L =
∑

t

∑

f

γVft

∑

s

∑

z∈{zs}

Pt(s, z|f) log Pt(s)

+
∑

t

∑

f

γVft

∑

s

∑

z∈{zs}

Pt(s, z|f) log Pt(z|s)

+
∑

t

∑

f

γVft

∑

s

∑

z∈{zs}

Pt(s, z|f) log Ps(f |z). (A.5)In order to take 
are of the normalization 
onstraints, the above equation must beaugmented by appropriate Lagrange multipliers φt, τ s
t and ρs

z, yielding
Q = L+

∑

t

φt

(

1−
∑

s

Pt(s)
)

+
∑

s

∑

t

τ s
t

(

1−
∑

z∈{zs}

Pt(z|s)
)

+
∑

s

∑

z

ρs
z

(

1−
∑

f

Ps(f |z)
)

. (A.6)Maximization of Q with respe
t to Pt(s), Pt(z|s) and Ps(f |z) leads to the following setof equations:
∑

f

γVft

∑

z∈{zs}

Pt(s, z|f) + φtPt(s) = 0 (A.7)
∑

f

γVftPt(s, z|f) + τ s
t Pt(z|s) = 0 (A.8)

∑

t

γVftPt(s, z|f) + ρs
zPs(f |z) = 0. (A.9)After eliminating the Lagrange multipliers, the M-step equations are obtained as

Pt(s) =

∑

z∈{zs}

∑

f Pt(s, z|f)Vft
∑

s

∑

z∈{zs}

∑

f Pt(s, z|f)Vft

Pt(z|s) =

∑

f Pt(s, z|f)Vft
∑

z∈{zs}

∑

f Pt(s, z|f)Vft
. (A.10)The above two equations, along with the E-step update of equation (A.2), form the updateequations for supervised separation. Noti
e that the basis ve
tors Ps(f |z), whi
h are learned13Sin
e observed data is modeled as a histogram, entries should be integers. To a

ount for this, the datais weighted by an unknown s
aling fa
tor γ.



102in a separate training stage, are kept �xed and not updated.In a semi-supervised framework where one also wants to estimate the basis ve
tors fora subset of the sour
es, the update equation is obtained by solving equation (A.9) as
Ps(f |z) =

∑

t VftPt(s, z|f)
∑

f

∑

t VftPt(s, z|f)
. (A.11)
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Appendix BSparse Over
omplete De
omposition: Appli
ation toImage DataThis appendix shows the appli
ability of the sparse latent variable de
omposition frameworkto analyze image data. Three appli
ations � unsupervised feature extra
tion, supervisedimage re
onstru
tion and supervised 
lassi�
ation � are presented.The CBCL database14 is used to demonstrate the �rst two appli
ations; the USPS hand-written digits database15 demonstrates the third appli
ation. These datasets are des
ribedhere brie�y.The CBCL database 
onsists of 2429 frontal-view image fa
es, ea
h image hand-alignedin a 19× 19 grid. Lee and Seung (1999) have used this dataset to demonstrate the utilityof NMF for extra
ting parts-based representations of data. Following their approa
h forprepro
essing, the grays
ale intensities were linearly s
aled so that the pixel mean andstandard deviation were equal to 0.25. The intensities were then 
lipped to the range [0, 1℄.The USPS handwritten digits database 
onsists of 8-bit grays
ale 16× 16 images of digits�0� through �9.� There are 1100 examples of ea
h 
lass.Feature Extra
tionLee and Seung (1999) applied NMF on the CBCL database and showed that the extra
tedbasis 
omponents had lo
alized features that �t well with intuitive notions of parts of fa
es.The latent variable model was applied to the database and Figure B·1(
) shows the results.The 
omponents are qualitatively similar to those extra
ted from NMF.14available from http://
b
l.mit.edu/software-datasets/Fa
eData2.html15available from http;//www.
s.toronto.edu/∼roweis/data.html



104However, the extra
ted bases are not entirely parts-based representations, as seen in the�gure: 
ompared to holisti
 representations, parts-based representations should have lowerentropy. We ran experiments on the CBCL Database by applying sparsity on the basisve
tors. Results are shown in Figure B·1(a). De
reasing the entropy of basis ve
tors leadsto parts-like representations. Qualitatively similar results 
an be obtained by in
reasingthe entropy of mixture weights as shown in Figure B·1(d).Instead of parts-like representations, one 
an obtain holisti
 representations by imposingsparsity on the mixture weights, as shown by Figure B·1(e). Qualitatively similar results
an be obtained by in
reasing the entropy of basis ve
tors as shown in Figure B·1(b).Image Re
onstru
tionThe ability of the over
omplete bases to explain new data and predi
t the values of un-observed 
omponents of the data was evaluated. Spe
i�
ally, the approa
h was used tore
onstru
t o

luded portions of images. The CBCL database, 
onsisting of 2429 frontalview fa
e images hand-aligned in 19×19 grids, was used for the experiment. Two thousandimages were randomly 
hosen as the training set. One hundred images from the remaining429 were randomly 
hosen as the test set. To 
reate o

luded test images, 6 × 6 gridswere removed in ten random 
on�gurations for 10 test fa
es ea
h, resulting in 100 o

ludedimages. Four sets of test images, where ea
h set had one, two, three or four 6× 6 pat
hesremoved, were 
reated. Figure B·2A illustrates the 
ase where 4 pat
hes were removed fromea
h fa
e.In a training stage, sets of K ∈ {50, 200, 500, 750, 1000} basis distributions were learnedfrom the training data. Sparsity was not used in the 
ompa
t (K < F ) 
ase (50 and200 bases), while sparsity was imposed (parameter = 0.1) on the mixture weights in theover
omplete 
ases (500, 750 and 1000 basis ve
tors).The pro
edure for estimating the o

luded regions of a test image has two steps. Inthe �rst step, the distribution underlying the image is estimated as a linear 
ombinationof the basis distributions. This is obtained by iterations of equations (3.17) and (3.25)
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Figure B·1: Basis images extra
ted from the CBCL Database using thelatent variable model. Panel (
) shows 49 basis images extra
ted withoutusing sparsity. These are qualitatively similar to the basis ve
tors obtainedby NMF (not shown). Noti
e that they are not entirely parts-like representa-tions. Panels (a) and (b) show results of varying α - the sparsity parameteron the basis ve
tors. Panels (d) and (e) show the e�e
ts of varying β -the sparsity parameter on mixture weights. Parts-like representations areobtained when one imposes sparsity on the basis ve
tors (a) or in
reasesentropy of the mixture weights (d). In
reasing entropy of basis ve
tors (b)and de
reasing entropy of the mixture weights (e) leads to holisti
 fa
e-likerepresentations.
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A. Occluded Faces B. Reconstructions

C. Original Test Images

Figure B·2: Appli
ation of latent variable de
omposition for re
onstru
tingfa
es from o

luded images (CBCL Database). (A). Example of a randomsubset of 36 o

luded test images. Four 6 × 6 pat
hes were removed fromthe images in several randomly 
hosen 
on�gurations (
orresponding to therows). (B). Re
onstru
ted fa
es from a sparse-over
omplete basis set of 1000learned 
omponents (sparsity parameter = 0.1). (C). Original test imagesare shown for 
omparison.



107to estimate Pt(z) (the bases P (f |z), being already known, stay �xed), based only on thepixels that are observed (i.e. we marginalize out the o

luded pixels). The 
ombination ofthe bases P (f |z) and the estimated Pt(z) give the overall distribution Pt(f) for the image.The o

luded pixel values at any pixel f is estimated as the expe
ted number of 
ounts atthe pixels, given by Pt(f)(
∑

f ′∈{Fo}
Vf ′)/(

∑

f ′∈{Fo}
Pt(f

′)) where Vf represents the valueof the image at the f th pixel and {Fo} is the set of observed pixels. Figure B·2B showsthe re
onstru
ted fa
es for the sparse-over
omplete 
ase of 1000 basis ve
tors. Figure B·3summarizes the results for all 
ases. Performan
e is measured by mean Signal-to-Noise-Ratio (SNR), where SNR for an image was 
omputed as the ratio of the sum of squaredpixel intensities of the original image to the sum of squared error between the original imagepixels and the re
onstru
tion.Handwritten Digit Classi�
ationThis experiment evaluates the spe
i�
ity of the bases to the pro
ess represented by thetraining data set for a simple example of handwritten digit 
lassi�
ation. The USPS Hand-written Digits database whi
h has 1100 examples for ea
h digit 
lass, was used. One hundredrandomly 
hosen examples from ea
h 
lass were used as the test set. The remaining exam-ples were used for training. During training, separate sets of basis distributions P k(f |z)were learned for ea
h 
lass, where k represents the index of the 
lass. To 
lassify any testimage v, the distribution underlying the image was estimated using the bases for ea
h 
lass(by estimating the mixture weights P k
v (z), keeping the bases �xed, as before). The �mat
h�of the bases to the test instan
e was indi
ated by the likelihood Lk of the image 
omputedusing P k(f) =

∑

z P k(f |z)P k
v (z) as Lk =

∑

f vf log P k(f). Sin
e the bases for the true
lass of a given image are expe
ted to best 
ompose the image, the likelihood for the 
orre
t
lass should be greatest. Hen
e, the image v was assigned to the 
lass for whi
h likelihoodwas the highest.Results are shown in Figure B·4. As shown in the �gure, imposing sparsity improves
lassi�
ation performan
e in almost all 
ases. Figure 4·7 shows four sets of basis distri-
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Figure B·3: Results of the fa
e re
onstru
tion experiment. Mean SNR ofthe re
onstru
tions is shown as a fun
tion of the number of basis ve
tors andthe test 
ase (number of deleted pat
hes, shown in the legend). Sparsity wasnot used in the 
ompa
t (K < F ) 
ase (50 and 200 bases), while sparsitywas imposed (parameter = 0.1) on the mixture weights in the over
omplete
ases (500, 750 and 1000 basis ve
tors). Noti
e that the sparse-over
omplete
odes 
onsistently perform better than the 
ompa
t 
odes.



109butions learned for the handwritten digit 
lass �3� with di�erent sparsity values on themixture weights. As the sparsity parameter is in
reased, bases tend to be holisti
 represen-tations of the input histograms, 
onsistent with improved 
lassi�
ation performan
e. Asthe representation of basis distributions get more holisti
, the more unlike they be
omewhen 
ompared to bases of other 
lasses. Thus, there is a smaller 
han
e that the basesof one 
lass 
an 
ompose an image in another 
lass, thereby improving performan
e. Onlywhen the number of bases used is too small does performan
e de
rease as sparsity in
reases(see results for 25 basis 
omponents).
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Figure B·4: Results of the 
lassi�
ation experiment. The legend showsnumber of basis distributions used. Noti
e that imposing sparsity almostalways leads to better 
lassi�
ation performan
e. In the 
ase of 100 bases,error rate 
omes down by almost 50% when a sparsity parameter of 0.3 isimposed.
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