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Abstract—This paper presents a framework for privacy-
preserving Gaussian Mixture Model computations. Specifically,
we consider a scenario where a central service wants to learn
the parameters of a Guassian Mixture Model from private data
distributed among multiple parties with privacy constraints. In
addition, the service also has security contraints where none
of the data owners are allowed to learn the values of the
trained parameters. We use Secure Multiparty Computations
to propose a framework that allows such computations. In
addition, we also show how such a central service can classify
new test data from privacy constrained third parties without
exposing the learned models. The classification occurs with the
added constraint that the service learns no information about
either the test data or the result of the classification.

Keywords-Secure Multiparty Computation, Privacy Preserv-
ing Data Mining, Distributed Data Mining, Gaussian Mixture
Models

I. INTRODUCTION

Consider a scenario involving three parties - Alice, Bob
and Charlie. Distributed among them is a dataset, the mining
of which would result in insights that are of great value to a
fourth person David. However, the dataset each person has
is private i.e. none of the parties will share data with others.
The problem for David is to set up a protocol whereby
everybody can collaborate to compute quantities relevant to
him but at the same time guarantees that private data is not
shared with anybody (including David).

There has been a lot of work in the field of cryptography
that enables privacy-preserving collaborative computations
like the one described in the scenario above. This area of
research is often referred to as Secure Multiparty Compu-
tations. The field originated from the work of Yao [1] on
the millionaire problem: two millionaires want to find out
who is richer but do not want to divulge specific numbers
of their wealth. See [2] for a detailed discussion of the
topic. In the last few years, researchers in data-mining
and machine learning have utilized these developments in
cryptography to propose new applications and algorithms
for privacy-preserving datamining. Some examples include
multiple parties performing k-means [3], computation of
means and related statistics from distributed databases [4]
and computer vision applications [5]–[7].

In this paper, we consider applications that use Gaussian
Mixture Models (GMMs). We take inspiration from the work
of Shashanka and Smaragdis [8]–[10] where they look at the
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problem of learning and applying Gaussian Mixture Models
for classification and in the context of Hidden Markov
Models for speech recognition on private datasets. We extend
their work on GMM training which is constrained to the case
where all the data is owned by a single party. We show how
GMMs can be learned from private data distributed among
multiple parties. We also present protocols to explicitly
compute likelihoods from Gaussians and GMMs and utilize
these to present simplified protocols for classification. The
paper is organized as follows. We first present background
about Secure Multiparty Computations in Section II and
then describe Gaussian Mixture Models in Section III. We
present protocols to compute the likelihood of a datapoint
given a Gaussian and a GMM in Section IV. Section V
presents privacy-preserving protocols for learning GMM
parameters from distributed private datasets while Section VI
presents privacy-preserving protocols for classifying a new
datapoint given learned GMMs for a set of classes. Finally,
we present conclusions and discuss avenues for future work
in Section VII.

II. SECURE MULTIPARTY COMPUTATIONS

Let us consider a problem with two parties Alice and Bob
who have private data vectors a and b respectively. They
want to compute the result of a function f(a,b). Consider
a trusted third-party who can take private data, calculate the
result c = f(a,b), and initimate the result to the parties.
Any protocol that implements an algorithm to compute the
result f(a,b) is said to be secure only if it leaks no more
information about a and b than what one can learn from the
result c from the third-party. We can implement an algorithm
to compute f(a,b) in a secure fashion by following these
steps:

• express the algorithm in terms of basic operations
for which secure implementations are known (secure
primitives),

• distribute intermediate results as random additive shares
between two parties so that neither has access to the
entire result.

If there are multiple parties involved in the computation, we
follow the same approach by breaking the algorithm down
into basic secure primitives and all the intermediate results
are distributed among the parties involved as random addi-
tive shares. Here we assume that all parties are semi-honest
where they follow the protocol but could be saving messages
and intermediate results to learn more about others’ private



Primitive and Output: Output: Relation
Inputs Alice Bob

SIP (x,y) a b a+ b = xTy
SMAX(x,y) j j j = argmaxi(xi + yi)

SLOG(x,y) a b a+ b = ln(
∑d

i=1 e
xi+yi )

Table I
SECURE PRIMTIVES UTILIZED IN THIS WORK. ALICE HAS PRIVATE
VECTOR x AND BOB HAS PRIVATE VECTOR y. THE ABOVE TABLE

SHOWS THE COMPUTATIONS ACCOMPLISHED BY THESE PRIMITIVES
AND THE DISTRIBUTED OUTPUTS THAT ARE GENERATED.

data. In other words, parties are honest but curious and will
follow the agreed-upon protocol but will try to learn as much
as possible from the data-flow between parties1.

At the most basic level, cryptographic primitives exist
that enable the evaluation of boolean gates and circuits.
The values of input wires are held as additive shares by
different parties and the desired result is additive shares of
the output wire. A detailed treatment is out of scope of
this paper and we refer interested readers to [2] for more
details. In this paper, the primtives we use are computations
such as scalar products and computing maximum values
of distributed vectors. The tool we use for the purpose is
a public-key homomorphic cryptosystem. The general idea
of a homomorphic cryptosystem is that one can perform
mathematical operations on encrypted data without the need
for decryption. Paillier cryptosystem is an example of one
such semantically secure2 homomorphic encryption scheme
[12], [13] where multiplication of the encryptions of two
numbers results in the encryption of the addition of the
original numbers. In other words, E(a)× E(b) = E(a+ b).
Appendix A describes how this cryptosystem can be used to
compute the scalar product of vectors held by two parties.

Below, we briefly describe the secure primitives that will
be used in the rest of the paper. We follow the approach used
in [10] and employ secure dot-product as the main primitive
of our algorithms, along with computations of the index
of the maximum and logsums. Let Alice have the vector
x = [x1 . . . xd] and Bob have the vector y = [y1 . . . yd]. a
and b refer to additive shares obtained by Alice and Bob
respectively.

• Secure Inner Product produces random additive shares
- a and b - of the result of the inner product between
x and y. This is denoted as a+ b = SIP (x,y).

• Secure Maximum Index results in Alice (and/or Bob)
receiving the index of the maximum element of x+ y
but neither party will know the value of the maximum.
This is denoted as j = SMAX(x+ y).

• Secure Logsum results in random additive shares a and

1An alternate model is where parties are malicious in which case
enforcing security becomes harder. In that case, one can utilize protocols
involving zero-knowledge proofs and conditional disclosure of secrets, see
[11] for more details.

2Semantic security in simple terms implies that an adversary will be
unable to distinguish whether a pair of ciphertexts encode the same message
or two different messages.

b such that a+b is the logsum of the elements of x+y.
In other words, if x + y = ln z = [ln z1 . . . ln zd],
a + b = ln(

∑d
i=1 zi). This is denoted as a + b =

SLOG(x,y).
Table I summarizes the above primitives and the opera-
tions they enable. Implementations of these primtives are
described in the Appendices.

III. BACKGROUND: GAUSSIAN MIXTURE MODELS

A Gaussian Mixture Model is a probability density model
that is comprised of several component Gaussian distri-
butions that combine with different weights to provide a
multimodal density. The mixture model can be characterized
by the number of component gaussians c, the mixing weights
corresponding to each component, and parameters for each
component Gaussian given by the mean and variance.

Gaussian Mixture Models are widely used in data mining
and machine learning for applications such as clustering
and classification. In this work, we consider the application
of GMMs to classification. We divide the computations
involving GMMs to three groups -

• computing the likelihood of a datapoint given a GMM,
• learning the parameters of a GMM from a given set of

data points, and
• using the likelihoods of a new test data point from

GMMs for each class for classification.
In this section, we formulate the computations in each

of the above groups in a way that makes designing secure
implementations easier.

A. Log-Likelihood Computations

Let us first consider the log-likelihood of a datapoint x
for a Gaussian distribution N (µ,Σ). It is given by

ln p(x|N ) = −1

2
(x−µ)tΣ−1(x−µ)− d

2
ln 2π− 1

2
ln |Σ|.

(1)
We can write the above equation in a simplified form as

ln p(x|N ) = xTW̄x+ w̄Tx+ w (2)

where

W̄ = −1

2
Σ−1, w̄ = Σ−1µ, and

w = −1

2
µTΣ−1µ− 1

2
ln |Σ| − d

2
ln 2π.

Let us create the (d + 1)-dimensional vectors x̄ and w by
appending the value 1 to x and appending w to w̄. By
changing W̄ into a (d + 1) × (d + 1) matrix W where
the first d components of the last row are zeros and the last
column is equal to wT as illustrated in Figure 1, we can
express equation (2) in a simplified form as

ln p(x|N ) = x̄TWx̄. (3)



Figure 1. Schematic illustrating how parameters µ and Σ of a Gaussian
distribution N (µ,Σ) can be encoded in a (d + 1) × (d + 1) matrix W
to simplify log-likelihood computations. The log-likelihood ln p(x|N ) can
be expressed x̄TWx̄ where x̄ is a (d+ 1)-vector obtained by appending
1 to x. Above, w = −(1/2)µTΣ−1µ− (1/2) ln |Σ| − (d/2) ln 2π.

Now, consider a Gaussian Mixture Model density with J
Gaussians

p(x) =
J∑

j=1

αjp(x|Nj), (4)

where Nj is a Gaussian with mean µj and covariance matrix
Σj , and αj are the mixture coefficients.

Let lj(x) represent the logarithm of a single term within
the summation on the right-hand-side of the above equation.
We have

lj(x) = ln(αjp(x|Nj)) = lnαj + ln p(x|Nj). (5)

We know from equation (3) that ln p(x|Nj) can be
written as x̄Wjx̄ where the components W̄, w̄ and w are
constructed from parameters µj and Σj (refer to Figure 1).
By adding lnαj to w, we can represent lj(x) as

lj(x) = x̄TWjx̄. (6)

Given lj(x) for all j, we can write the log-likelihood as

ln p(x) = ln

( J∑
j=1

elj(x)
)

= logsum
(
l1(x), . . . , lJ (x)

)
. (7)

B. GMM Training

Let the training data correspond to K d-component vec-
tors x1,x2, . . . ,xK and the problem is to learn a mixture
of c Gaussians from this dataset. Let N (µi,Σi) represent
the i-th Gaussian where µi is the mean vector and Σi

is the covariance matrix. Let P (Ni) represent the mixture
weight for the i-th gaussian. The above parameters can be
estimated iteratively using update equations derived from the
Expectation-Maximization algorithm.

Let us denote the estimate of a parameter after the rth
iteration by using a superscript and let λr denote the entire
parameter set after the iteration. The steps of the EM

algorithm are given by the following equations:

E Step:

P (Ni|xk, λ
r) =

p(xk|Ni)P
r(Ni)∑c

j=1 p(xk|Nj)P r(Nj)
, (8)

M Step:

µr+1
i =

∑K
k=1 P (Ni|xk, λ

r)xk∑K
k=1 P (Ni|xk, λr)

,

P r+1(Ni) =

∑K
k=1 P (Ni|xk, λ

r)

K
,

Σr+1
i =

∑K
k=1 P (Ni|xk, λ

r)(xk − µr
i )(xk − µr

i )
T∑K

k=1 P (Ni|xk, λr)
.

(9)

Iterating through the above equations is guaranteed to
converge to a local optimum.

C. GMM Classification

Consider the problem where we have a data vector x that
we wish to classify into N classes ωi, i = {1, . . . , N} and
each class is modeled as a Gaussian Mixture Model. The
idea is to evaluate the value of the discriminant function

gi(x) = ln p(x|ωi) + lnP (ωi) (10)

for all classes ωi and assign x to class ωi if gi(x) > gj(x)
for all j ̸= i. Here, p(x|ωi) is the class-conditional proba-
bility density function (class likelihood) and P (ωi) is the a
priori probability of class ωi.

Let the mean vector and covariance matrix of the j-th
Gaussian in class ωi be µij and Σij respectively. The class-
conditional probability distribution is then given by

p(x|ωi) =

Ji∑
j=1

αijp(x|Nij), (11)

where Ji is the number of Gaussians describing class ωi and
αij are the mixture coefficients. Nij is shortened notation
for N (µij ,Σij).

From Section III-A, we know that the log-likelihood can
be written as (by equation (7))

ln p(x|ωi) = ln

( Ji∑
j=1

elij(x)
)
, (12)

where

lij(x) = ln(αijp(x|Nij)) = x̄TWijx̄. (13)

The matrix Wij is constructed using parameters αij , µij

and Σij as explained in the derivation of equation (6) from
equation (5).



The discriminant function for the i-th class can be written
as

gi(x) = logsum
(
li1(x), . . . , liJi(x)

)
+ lnP (ωi)

= ln

( Ji∑
j=1

elij(x)
)
+ lnP (ωi) (14)

and can be used for classification.

IV. PRIVACY PRESERVING GMM LIKELIHOODS

Let Alice have a d-component vector x. In this section, we
show how Alice and David can compute the log-likelihood
of x given a Gaussian N (µ,Σ) owned by David. We
present a protocol for accomplishing this computation
where Alice will not disclose any information about x to
David and David does not disclose any information to Alice
about the parameters of the Gaussian. We then present a
protocol that generalizes it to the situation where David
has a Gaussian Mixture Model instead of a single Gaussian
distribution.

Protocol IV.1: Likelihood given a Gaussian Distribution
Inputs: Alice has (d + 1)-vector x (with the last entry as
1). David has parameters of a Guassian µ and Σ encoded
in the form of a matrix W as illustrated in Figure 1. Let
Wj represent the j-th column of matrix W.
Computation: ln p(x|N ) = xTWx
Protocol:

1) For j = 1, 2, . . . , d+ 1

• Alice and David perform secure inner product
with x and Wj to obtain shares aj and bj

respectively, i.e. aj + bj = SIP (x,Wj).
2) Alice forms vector a = [a1, . . . , ad+1]T and David

forms vector b = [b1, . . . , bd+1]T .
3) Alice and David perform SIP (x,b) to obtain q and

r respectively.
4) Alice’s share is aTx+ q and David’s share is r.

• xTWx = aTx+ q + r.

Protocol IV.2: Likelihood given a GMM
Inputs: Alice has (d + 1)-vector x (with the last entry
as 1). David has parameters of a Guassian Mixture Model
density p(x) given by equation (4) represented as matrices
Wj , j = 1, . . . , J .
Computation: From equation (7), ln p(x) is given by

ln

( J∑
j=1

elj(x)
)
, where lj(x) = xTWjx.

Protocol:
1) For j = 1, 2, . . . , J

Alice Bob David Relations
{xk} 1 6 k 6 K1

{xl} 1 6 l 6 K2

µr
iAB µr

iAB µiD µr
iAB + µr

iD = µr
i

ℓiAB ℓiAB ℓiD ℓiAB + ℓiD = lnP r(Ni)
Σr

i

Table II
FOR A GIVEN GAUSSIAN Ni , INPUTS HELD BY ALL PARTIES AND THE

RELATIONS BETWEEN THEM FOR PROTOCOLS GIVEN IN SECTION V-A.

• Alice and David engage in Protocol IV.1 with x
and Wj as inputs to obtain aj and bj respectively.

2) Alice forms vector a = [a1, . . . , aJ ]
T and David forms

vector b = [b1, . . . , bJ ]
T .

3) Alice and David perform Secure Logsum Protocol
with a and b to obtain u and v respectively, i.e.
u+ v = SLOG(a,b).

• ln
(∑J

j=1 e
lj(x)

)
= u+ v

V. PRIVACY PRESERVING GMM TRAINING

Consider a scenario where Alice has K1 d-component
vectors x1,x2, . . . ,xK1 and Bob has K2 d-component vec-
tors x1,x2, . . . ,xK2 . We shall use the subscript k to denote
datapoints of Alice and subscript l to denote datapoints (with
the last entry as 1)of Bob. David wants to learn a mixture
of c Gaussians from the combined data from Alice and Bob.
Additionally, there are privacy constraints where Alice and
Bob do not wish to disclose their private data to anybody
and David does not wish that the parameters learned by him
are disclosed to anyone.

The protocol has to let David learn the parameters by
iteratively applying equations 8 and 9 on Alice and Bob’s
data. As in Section III-B, let µr

i , Σr
i and P r(Ni) denote the

mean vector, covariance matrix, and the mixture weight for
the i-th Gaussian after the r-th iteration.

At any given iteration, Alice and Bob have access to
their respective datapoints and let David have access to the
parameter Σr

i . All other parameters are split between David
and Alice/Bob as random additive shares.

Note that the method described below is directly applica-
ble to the case where David wants to learn parameters from
data distrbuted among more than two people. For the purpose
of clarity and ease of exposition, we limit the number of data
owners to two without loss of any generality.

A. E-Step

The E-step update to compute P (Ni|xk, λ
r) is given by

equation (8).

Protocol V.A.1: E-Step Update
Inputs: See Table II for inputs held by each party. Alice
forms x̄k = (xk−µr

iAB) and David forms matrix Wi using
Σ = Σr

i and µ = µr
iD as illustrated in Figure 1.

Computation: lnP (Ni|xk, λ
r) given by equation (8).

Protocol:



1) For j = 1, . . . , c

• Alice and David engage in Protocol IV.1 with x̄k

and Wj as inputs to obtain āj and b̄j respec-
tively3.

2) Alice forms the c-vector a where aj = āj + ℓjAB and
David forms the c-vector b where bj = b̄j + ℓjD.

3) Alice and David engage in the Secure Logsum pro-
tocol with a and b as inputs to obtain u and v
respectively, i.e. u+ v = SLOG(a,b).

4) Alice obtains her share Ek = (ai − u) and David
obtains his share Fk = (bi − v).

• Ek + Fk = P (Ni|xk, λ
r).

Alice and David repeat this protocol for every data vector
owned by Alice. Similarly, Bob and David can cooperate
to get additive shares El and Fl such that El + Fl =
P (Ni|xl, λ

r) for datapoints xl owned by Bob.

B. M-Step

The M-Step equations are given by equations (9).
Let Alice have xk, k = {1, . . . ,K1} and Bob have
xl, l = {1, . . . ,K2}. Below, we present protocols for
computing each parameter.

Protocol V.B.1: Computation of Mixture Weights
Inputs: See Table III for inputs held by each party.
Computation:

P r+1(Ni) =

∑K1

k=1 P (Ni|xk, λ
r) +

∑K2

l=1 P (Ni|xl, λ
r)

K1 +K2
(15)

Protocol:
1) Alice and David engage in Secure Logsum Protocol

with vectors EA and FA to obtain eA and fA, i.e.
eA + fA = SLOG(EA,FA).

• eA + fA = ln(
∑K1

k=1 P (Ni|xk, λ
r))

2) Bob and David engage in Secure Logsum Protocol
with vectors EB and FB to obtain eB and fB , i.e.
eB + fB = SLOG(EB,FB).

• eB + fB = ln(
∑K2

l=1 P (Ni|xl, λ
r))

3) Alice sends eA to Bob.
4) Bob and David perform Secure Logsum Protocol on

vectors [eAeB] and [fAfB ] respectively to obtain ē
and f̄ respectively.

5) Bob’s share of the desired answer is given by ℓiAB =
ē. David computes his share ℓiD = f̄ − ln(K1 +K2).

• ℓiAB + ℓiD = lnP r+1(Ni).
In the end, Bob shares ℓiAB = ē with Alice as well.

3It is easy to verify āj+b̄j = ln p(xk|Ni). The log-likelihood is derived
from equation (1) and replacing x by (x − µiAB) and µ by µiD does
not change the result.

Alice Bob David Relations
{xk} 1 6 k 6 K1

{xl} 1 6 l 6 K2

EA FA EA
k + FA

k = lnP (Ni|xk, λ
r)

EB FB EB
l + FB

l = lnP (Ni|xl, λ
r)

Table III
FOR A GIVEN GAUSSIAN Ni , INPUTS HELD BY ALL PARTIES AND THE

RELATIONS BETWEEN THEM FOR PROTOCOLS GIVEN IN SECTION V-B.

Protocol V.B.2: Computation of Mean
Inputs: See Table III for inputs held by each party. In
addition, for each j = {1, . . . , d}, Alice has K1-vector hA

j

formed by the j-th elements of x1, . . . ,xK1 . Similarly, Bob
has the K2-vector hB

j formed by the j-th elements of his
dataset.
Computation:

µr+1
i =

∑K1

k=1 P (Ni|xk, λ
r)xk +

∑K2

l=1 P (Ni|xl, λ
r)xl∑K1

k=1 P (Ni|xk, λr) +
∑K2

l=1 P (Ni|xl, λr)
(16)

Protocol:
For each j = {1, . . . , d},

1) Alice and David engage in Secure Logsum Protocol
with vectors EA + lnhA

j and FA to obtain e′A and
f ′A, i.e. e′A + f ′A = SLOG(EA + lnhA

j ,F
A).

2) Bob and David engage in Secure Logsum Protocol
with vectors EB + lnhB

j and FB to obtain e′B and
f ′B , i.e. e′B + f ′B = SLOG(EB + lnhB

j ,F
B).

3) Alice sends e′A to Bob.
4) Bob and David perform Secure Logsum Protocol on

vectors [e′Ae′B ] and [f ′Af ′B ] to obtain ē′ and f̄ ′

respectively.
• Notice that given ē and f̄ from Step 4 of Protocol

V.B.1, (ē′ − ē) + (f̄ ′ − f̄) = lnµr+1
ij , the j-th

element of µr+1
i .

5) Bob and David obtain the j-th elements of µr+1
iAB

and µr+1
iD respectively, as a result of SIP (exp(ē′ −

ē), exp(f̄ ′ − f̄)).
At the end, Bob shares µr+1

iAB with Alice.

Protocol V.B.3: Computation of the Covariance Matrix
Inputs: See Table III for inputs held by each party. Also,
Alice and Bob have µr+1

iAB while David has µr+1
iD .

Computation:

Σr+1
i =

∑K
k=1 P (Ni|xk, λ

r)(x̄k − µ̄i)(x̄k − µ̄i)
T∑K

k=1 P (Ni|xk, λr)
, (17)

where x̄k = (xk − µr+1
iAB) and µ̄i = µr+1

iD .
Protocol:
Consider the evaluation of σmn, the (mn)-th element of
Σr+1

i . We first consider the evaluation of the (mn)-th
element of (xk − µr+1

i )(xk − µr+1
i )T . This is equivalent

to evaluating (x̄k− µ̄i)(x̄k− µ̄i)
T . Let the j-th elements of



x̄k and µ̄i be x̄kj and µ̄ij respectively. Notice that Alice has
access to x̄k, Bob has access to x̄l and David had access to
µ̄i.

1) Alice and David perform the follwoing computations.
• For k = 1, . . . ,K1, Alice and David en-

gage in the secure inner product protocol
with vectors exp(γA

k )[x̄kmx̄kn,−x̄km, x̄kn, 1] and
[1, m̄uin,−µ̄im, µ̄imµ̄in], where γA

k is a random
scalar chosen by Alice. Let David obtain the result
ϕA
k .

• Alice forms the K1-vector γA = [γA
1 , . . . , γ

A
K1

]
and David forms the vector ϕA = [ϕA

1 , . . . , ϕ
A
K1

].
Alice and David engage in the secure logsum protocol
with vectors (EA − γA) and (FA + lnϕA) to obtain
êA and f̂A i.e. êA+ f̂A = SLOG((EA−γA), (FA+
lnϕA)).

2) Bob and David perform computations similar to the
step above to obtain êB and f̂B respectively as a result
of SLOG((EB − γB), (FB + lnϕB)).

3) Alice sends êA to Bob.
4) Bob and David perform Secure Logsum protocol on

vectors [êAêB] and [f̂Af̂B ] to obtain ê and f̂ respec-
tively.

• Notice that given ē and f̄ from Step 4 of Protocol
V.B.1, (ê − ē) + (f̂ − f̄) = lnσmn, the (mn)-th
element of Σr+1

i .
5) Bob sends (ê − ē) to David so that he can calculate

σmn.
All the above three M-step protocols are run in each itera-

tion. At the end of all iterations, Bob sends his (and Alice’s)
shares µiAB and ℓiAB to David so he can calculate the mean
µi and the mixture weight P (Ni) for i = 1, 2, . . . , c.

In this section, we presented protocols so that David can
learn parameters of a GMM using private data from Alice
and Bob. The protocols presented here can be extended in
a straightforward manner to cases where data is distributed
among more than two people.

VI. PRIVACY PRESERVING GMM CLASSIFICATION

Consider a situation where Alice has a d-component
vector x and David has N classes ωi, i = {1, . . . , N}
where each class is modeled as a Gaussian Mixture Model
with the probability density given by equation (11). Alice
would like David to classify her data but does not want to
disclose to him any information about the data or the result
of the classification. Also, David does not want Alice to
learn any information about the parameters of his models.
In this section, we present a protocol which makes the
above computation possible.

Protocol VI.1: Classification
Inputs: Alice has x. For class ωi, i = 1, . . . , N , David
has encoded the GMM parameters αij , µij and Σij in

the form of matrices Wij as explained in the derivation
of equation (6) from equation (5) for all j, j = 1, . . . , Ji.
Computation: Alice learns I such that gI(x) > gj(x) for
all j ̸= I where gi(x) is defined by equation (14).
Protocol:

1) For i = 1, 2, . . . , N

• Alice and David engage in Protocol IV.2 with x
and the set of matrices Wij , j ∈ {1, . . . , Ji} as
inputs to obtain ui and v̄i respectively.

2) Alice forms the vector u = [u1, . . . , uN ] and David
forms vector v where vi = v̄i + lnP (ωi).

• ui + vi = gi(x)

3) Alice and David perform the Secure Maximum Index
protocol between vectors u and v and Alice obtains
I = SMAX(u,v).

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have presented privacy preserving pro-
tocols that enable computations involving Gaussian Mixture
Models such as log-likelihoods and parameter estimation.
We first proposed protocols to compute the likelihood of
a data vector given a Gaussian Mixture Model when the
data and model are held by different parties with privacy
constraints. We then showed how these protocols can be
utilized for classification of a datapoint from a third-party
service. We also presented protocols that enables a third
party service to learn the parameters of a Gaussian Mixture
Model from private data distributed among multiple parties.

Privacy-preserving protocols are typically evaluated for
correctness, security and efficiency. It is straightforward
to verify the correctness of the proposed protocols. All
the protocols presented are exact and security is obtained
not from statistically perturbing data but from utilizing
underlying cryptographic primitives such as the Secure Inner
Product and distributing intermediate results as random
additive shares. Assuming that the underlying primitives are
secure, a quick exercise through the steps of each protocol
should demonstrate that no information leaks between par-
ties. However, the security and efficiency of the proposed
protocols depend greatly on the security and efficiency of
the underlying primitives used. For example, consider the
Secure Inner Product (SIP ) primitive which is the most
important primitive repeatedly used in all our protocols. The
Secure Logsum primtive SLOG is also based on one call
to SIP . The quality of the SIP implementation directly
affects the quality of the proposed protocols. There are two
broad ways to implement SIP - (a) cryptographic protocols
such as the one described in Appendix A [14] and an
oblivious transfer based protocol proposed by [15], and (b)
algebraic protocols such as the one based on linear trans-
formations proposed by [16]. Typically, algebraic protocols
are more efficient than cryptographic protocols in terms of
computational complexity but may leak more information.



A good choice of the type of implementation to be used
will have to balance tradeoffs such and computational and
communication efficieny as opposed to security and privacy.
We skip a detailed discussion of these issues as it is out of
scope of this paper.

This work points to many interesting directions for future
research. One of these is to design and implement privacy-
preserving protocols for models other than mixtures of
Gaussians. Our proposed approach points a principled way
to achieve it if the computations can be expressed as a series
of inner products. The other important direction is to work
on improved primitives such as SIP and provide a better
understanding of the security and efficiency tradeoffs.

We have presented these protocols as a first step towards
the utilization of GMMs in privacy-preserving datamining.
With advances in the cryptography community in terms
of faster and more efficient cryptographic primitives, we
expect the computational and communication issues to be
less important factors. Our hope is that these ideas are
utilized in real-world scenarios in the future. An example
would be a cloud-based analytics service using Gaussian
Mixture Models that also guarantees privacy for the users.

APPENDIX A.
SECURE INNER PRODUCT USING HOMOMORPHIC

ENCRYPTION

The following protocol is based on homomorphic encryp-
tion and was proposed by [14]. Let the triple (Ge, En,
De) denote a public-key homomorphic cryptosystem (prob-
abilistic polynomial time algorithms for key-generation,
encryption and decryption). The key generation algorithm
generates a valid pair (sk, pk) of private and public keys for
a security parameter k. The encryption algorithm En takes
as an input a plaintext m, a random value r and a public key
pk and outputs the corresponding ciphertext En(pk; m, r).
The decryption algorithm De takes as an input a ciphertext
c and a private key sk (corresponding to the public key pk)
and outputs a plaintext De(sk; c). It is required that De(sk;
En(pk; m, r)) = m.

If the cryptosystem is homomorphic, we have En(pk;
m1, r1)·En(pk; m2, r2) = En(pk; m1 +m2, r1 + r2).

Let Bob and Alice have pivate vectors x and y respec-
tively. The desired result is to obtain shares a and b such
that a+ b = xTy. The protocol is described below.

1) Setup phase. Bob:
• generates a private and public key pair (sk, pk).
• sends pk to Alice.

2) For i ∈ {1, . . . , d}, Bob:
• generates a random new string ri.
• sends ci = En(pk; xi, ri) to Alice.

3) Alice:
• sets z ←

∏d
i=1 c

yi

i .

• generates a random plaintext b and a random
nonce r′.

• sends z′ = z·En(pk; −b, r′) to Bob.
4) Bob computes a = De(sk; z′) = xTy − b.

APPENDIX B.
SECURE MAXIMUM INDEX USING PERMUTATIONS

Let Alice and Bob have private data vectors x and y
respectively. They would like to compute the index of the
maximum element in x+ y.

Consider a permutation scheme π chosen by Alice but
unknown to Bob. [17] presents a protocol that enables Alice
and Bob to receive additive shares q and s of π(x + y) -
the permutation of the vector x+y. Alice then sends q− r,
where r is a random number chosen by her, to Bob. Bob
sends back the index of the maximum element of q+ s− r
to Alice who then computes the real index using the inverse
of the permutation π. Neither party learns the value of the
maximum element and Bob does not learn the index of the
maximum element.

APPENDIX C.
SECURE LOGSUM

Let Alice and Bob have private data vectors x and y
respectively such that x+ y = ln z. [10] present a protocol
that results in additive shares q and s such that q + s =
ln
∑

i zi. The protocol is described below.
1) Alice and Bob compute the dot product between

vectors ex−q and ey using SIP (ex−q, ey) where q
is a random number chosen by Alice. Let Bob obtain
ϕ, the result of the dot product.

2) Notice that Bob has s = lnϕ = −q+ln(
∑d

j=1 e
xj+yj )

and Alice has q.
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