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ABSTRACT

We present a new algorithm to estimate the parameters of a Hid-
den Markov Model (HMM), specifically the transition probability
matrix of the hidden states and the emission probabilities, given an
observed sequence of data. The algorithm uses the number of tran-
sitions present in the observed label sequence and computes the pa-
rameters in an iterative fashion. We present experiments that demon-
strate significant speed gains obtained by the current algorithm as
compared to traditional algorithms such as Baum-Welch iterations.

Index Terms— Hidden Markov Models, EM Algorithm

1. INTRODUCTION

Hidden Markov Models (HMMs) have found wide use in modeling
temporal patterns in a variety of fields such as speech recognition,
computational linguistics and bio-informatics. HMMs model an ob-
served sequence of data as the outputs of a sequence of hidden states
where it is assumed that the chain of hidden states is a Markov pro-
cess. The applicability of HMMs to practical problems is possible
because of the existence of methods such as the Baum-Welch rees-
timation procedure to estimate HMM parameters given a data se-
quence. A great overview of HMMs and applications can be found
in a tutorial by Rabiner [1].

The motivation for this work arises from situations where ap-
plication of HMM is ideal but impractical because of excessive de-
mands on computational resources. For example, [2] point out the
high computational cost of HMM training in the context of intru-
sion detection because of long sequences. Another such situation is
where one wants to learn a single HMM model from multiple se-
quences [3] in which case parameter estimation becomes computa-
tionally expensive. The reason for this computational complexity
comes from the way Baum-Welch algorithm works where compu-
tations are done at every step of the sequence and this process is
repeated over several iterations.

We propose an alternate method to estimate HMM parameters
where we eliminate the need for computations at every step of the
sequence in every iteration. Observations are represented as a matrix
of transition counts and the proposed algorithm estimates the param-
eters using this reduced representation of the data sequence. We pro-
pose a generative model for the new data representation and derive
update rules for parameters using the Expectation-Maximization al-
gorithm. Experiments on synthetic data demonstrate the superiority
of the proposed algorithm in terms of computational complexity.

In Section 2, we present some background and set the notations
used in the rest of the paper. We describe our algorithm in Section 3
and discuss related work in Section 4. Section 5 describes experi-
mental results and we conclude the paper in Section 6.

2. HIDDEN MARKOV MODELS

Notations used in this paper follow conventions used by [1]. Let the
parameters that define an HMM be given by the following:

• N , the number of hidden states in the model. Let the set of
states be denoted by S = {S1, S2, . . . , SN} and let the state
at time step t be denoted by qt.

• M , the number of distinct observable labels per state, i.e. the
discrete alphabet size. Let the set of labels be denoted by
V = {v1, v2, . . . , vM}.

• The state transition probability distribution A = {aij}where
aij = P (qt+1 = Sj |qt = Si), 1 6 i, j 6 N.

• The observation label probability distribution in state i, B =
{bi(k)}, where bi(k) = P (vk at t|qt = Si), 1 6 i 6
N, 1 6 k 6 M.

• The initial state distribution π = {πi}, where πi = P (q1 =
Si), 1 6 i 6 N .

A complete specification of an HMM requires specification of
two model parameters N and M , specification of observation labels,
and specification of the three probability measures A, B and π. In
the rest of the paper, we use the compact notation λ = {A,B, π} to
indicate the complete parameter set of the model.

Let Ō = O1O2 . . . OT indicate a sequence of T observation
labels. Rabiner [1] points out three basic problems of interest for
HMMs: (a) given observations Ō and model λ, how do we efficiently
compute P (Ō|λ)? (b) given the observation sequence Ō and model
λ, how do we choose a hidden state sequence that best explains the
observed sequence? and (c) how do we adjust model parameters λ
to maximize the likelihood P (Ō|λ)?

This paper focuses on the last problem which is the problem
of training an HMM. It is by far the most difficult problem and
there is no known way to analytically solve for the values of param-
eters λ that maximizes the likelihood. Existing methods use iterative
procedures that guarantee that the likelihood is locally maximized.
Examples of such methods include the Baum-Welch algorithm [1]
and gradient-descent techniques [4]. These methods use a forward-
backward procedure where intermediate forward and backward vari-
ables are computed at every step of the observed label sequence and
are used to compute new estimates of the HMM parameters in a
given iteration. The whole process is repeated iteratively until a lo-
cal maximum is reached. These methods are quite efficient com-
pared to the naive method of computing all possible probabilities at
every step of the observation label sequence. However, this iterative
procedure can be significantly slow if the observed sequence is quite
large and in certain applications can make HMMs impractical to use.



Fig. 1. Graphical Models for (a) HMM, and (b) the generative model we
use. In (b), each draw corresponds to a pair of observations in the sequence
and the draws are repeated T − 1 times.

3. ALGORITHM

In this section, we propose a new algorithm to train HMM parame-
ters that is significantly faster than the traditional techniques used in
HMM training. Instead of using the entire observed label sequence
as the training data, the algorithm works on the number of transitions
between every pair of labels that was observed in the sequence.

Let Ō = O1O2 . . . OT denote the observed sequence of labels.
Let the transitions between the observed labels be given by the M ×
M count matrix C, i.e. the entry cij indicates the number of times
the consecutive pair {vi, vj} was observed in Ō. Let the probability
vector p = {p1, p2, . . . , pN} indicate the steady state probabilities
of the hidden states.

We propose to use the matrix C to characterize the probability
of observing a particular OtOt+1 pair in sequence in Ō. The idea is
to formulate this probability in terms of λ and then use Expectation-
Maximization (EM) algorithm for this model to learn λ.

3.1. Generative Model

Let us first consider the generative process for C. C is assumed
to be the histogram of an independent set of T − 1 draws from an
underlying probability distribution over the M×M pairs of {vi, vj}.
Let the matrix C̄ represent this probability distribution where the
ij-th entry c̄ij represents the probability of observing the label pair
{vi, vj} in successive timesteps.

Consider a given draw where timesteps corresponding to the
label-pair drawn are {t, t + 1}. For this draw, (1) we first choose
a hidden state qt = Sk with probability pk, (2) we observe a label
vi with probability bk(i) = P (vi|qt = Sk), (3) we choose the sub-
sequent hidden state qt+1 = Sl with probability akl, and (4) we ob-
serve the second label vj with probability bl(j) = P (vj |qt+1 = Sl).
Figure 1 illustrates the graphical model.

Given the above steps, it is easy to see that the joint distribu-
tion of the hidden state pair and the observed label pair is given by
P (qt = Sk, qt+1 = Sl, Ot = vi, Ot+1 = vj) = pk · bk(i) · akl ·
bl(j). Summing the above joint distribution over all possible hidden
state pairs, we obtain the model for probability P (Ot = vi, Ot+1 =

vj) as c̄ij =
∑N

k=1

∑N
l=1 pk · bk(i) · akl · bl(j). Writing pk · akl as

ākl - the joint state probability distribution, we write the model as

c̄ij =

N∑
k=1

N∑
l=1

bk(i) · ākl · bl(j) i.e. C̄ = BĀBT . (1)

3.2. Parameter Estimation

We use the Expectation Maximization algorithm to estimate the
HMM parameters A and B. EM alternates two steps: (1) an Ex-
pectation (E) step where the a posteriori probabilities of the latent
variables are computed based on the current estimates of parameters,

and (2) a maximization (M) step, where parameters are updated such
that the expected complete data log-likelihood is maximized.

In the model given by equation (1), the hidden variables are Sk

and Sl. For the E-step, we obtain the a posteriori probability for the
latent variables as

Pklij = P (Sk, Sl|vi, vj) =
bk(i) · ākl · bl(j)∑N

k=1

∑N
l=1 bk(i) · ākl · bl(j)

. (2)

In the M-step, we maximize the expected complete data log-
likelihood. The equations are

ākl =

∑M
i=1

∑M
j=1 cijPklij∑M

i=1

∑M
j=1 cij

∑N
k=1

∑N
l=1 Pklij

,

bk(i) =

∑M
j=1 cij

∑N
l=1 Pklij +

∑M
i=1 cij

∑N
k=1 Pklij∑M

i=1

∑M
j=1 cij

(∑N
l=1 Pklij +

∑N
k=1 Pklij

) . (3)

Iterating through equations (2) and (3) is guaranteed to provide con-
verging estimates of the parameters. akl can be computed from ākl

using the relation akl = ākl/(
∑N

l=1 ākl). Details of the derivation
are provided in the appendix.

3.3. Algorithm and Complexity

The algorithm can be summarized as follows. Symbols ⊙ and ⊘
indicate element-wise multiplication and division respectively.

Input: Matrix C
Initialize Ā and B
Iterate

R← C⊘ (BĀBT )
Ā′ ← Ā⊙ (BTRB), B′ ← B⊙ (RBĀT +RTBĀ)
Ā← Normalize all entries of Ā′

B← Normalize columns of B′

End Iterations
A← Normalize rows of Ā.

In each iteration, there are eight matrix multiplications - four with
O(MN2) and four with O(M2N) operations. Also, there are MN
element-wise divisions and MN+N2 element-wise multiplications
leading to O(MN2 +M2N +MN +N2) operations in all. Since
N ≪ M in practice, the complexity of the proposed algorithm is
O(IM2N) where I is the total number of iterations. If we include
the step to compute the matrix C from the sequence, the complexity
is O(IM2N + T ).

In comparison, the complexity of Baum-Welch algorithm is
given by O(IN2T ) where T is the length of the sequence. If
T ≫M , the our algorithm provides significant speed gains and this
is demonstrated in experiments.

4. RELATED WORK

The proposed algorithm is an approximation method since higher-
order transitions in the observed sequence are ignored. This kind of
approximation is used in the control theory literature in the context
of optimal predictor chains and Mori-Zwanzig representations [5].
Specifically, non-Markovian systems can be represented as a reduced
model with several terms where the leading-order term represents the
Markovian aspect while other terms capture history and noise. When
the non-Markovian system is a HMM, the first term is a Markov
chain that optimally represents the HMM. It can be shown that the
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Fig. 2. Comparison of the proposed algorithm with Baum-Welch Algorithm on a sequence of length 5000 and different number of iterations (left two panels),
and various sequence lengths with 20 iterations (right two panels). We ran 10 different experiments where we learned the HMM parameters from the two
algorithms using the same initial values. Using the learned parameters, we fit a different test sequence and the resulting log-likelihoods are plotted (panels 1
and 3). We see that the proposed algorithm outperforms the Baum-Welch algorithm by several orders of magnitude in the average run-time (panels 2 and 4).

joint-state distribution of this ”optimal predictor chain” is given by
Equation (1). In [5], the goal is to estimate the parameters of the op-
timal Markov chain in terms of the HMM parameters while our goal
is to solve the inverse problem of estimating the HMM parameters
using the approximation model of Equation (1).

In the last few years, several researchers have proposed algo-
rithms for HMM learning as alternatives to Baum-Welch. One ap-
proach is to re-parametrize the problem. [6] proposes an efficient
SVD based approach while [7,8] propose using split-data likelihoods
for recursive estimation by considering blocks of different lengths
(instead of pairs as considered in this paper). The other approach is
to trade off estimation accuracy for algorithmic efficiency. Exam-
ples include pairwise likelihoods [9] and composite marginal likeli-
hoods [10] for general state space models. Our work is more related
to the latter approach.

The author was made aware of a recent paper [11] that takes a
similar approach to ours. The authors propose to use observed tran-
sitions and use a model similar to Equation (1). However, they use
Nonnegative Matrix Factorization with a least-squares criterion for
parameter updates while we use EM algorithm which is equivalent
to using KL-divergence as the criterion. They use a kernel based ap-
proach to extend their algorithm to continuous observations and the
same method is applicable to our algorithm as well. However, we
skip the details due to space constraints.

5. EXPERIMENTS

In this section, we describe experiments that compare the traditional
Baum-Welch algorithm with our proposed approach. There were
two main goals for the experiments: (a) compare the accuracy (fit) of
the learned parameters in terms of log-likelihood, and (b) compare
the runtimes for the algorithms. All algorithms were implemented
in the MATLAB environment. For Baum-Welch algorithm, we used
the built-in functions available in MATLAB.

For the first data set, we chose 3 hidden states and 7 observa-
tion labels. We first generated a sequence of observations to serve as
training data. We trained parameters A and B using our algorithm
as well as the Baum-Welch algorithm. In the first part, we chose
four cases where we set the number of iterations to 5, 10, 20 and
50 respectively. For each case, we ran ten ”runs” where the initial
values of A and B (to be used by both algorithms) were chosen ran-
domly at the beginning of the run. The parameters were learned by
each method and was used to fit a test sequence of length 5000. In
the second part, we fixed the number of iterations to 20 but varied
the length of the test sequence and chose 5 cases corresponding to
sequence lengths of 200, 500, 1000, 5000 and 10000. For each case,
parameters learned by both algorithms were used to fit the test se-
quence and ten ”runs” were performed with different initializations.
Figure 2 summarizes the results.
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Fig. 3. Log-likelihoods (left-panel) obtained by running the algorithms on
dataset used by [11]. The right-panel illustrates the recovered observation
probability distributions by our algorithm repeated over 10 experiments.

For the second data set, we chose to repeat the experiment con-
ducted in [11] where they chose a model with 3 hidden states. The
transition matrix A was set to [(0, 0.9, 0.1), (0, 0, 1), (1, 0, 0)]. The
observations were created in two steps. First, values v′ were created
according to the following models - b1(v′) ∼ N (11, 2), b2(v′) ∼
N (16, 3) and b3(v

′) ∼ U(16, 26). The generated values were
rounded to the nearest integer to obtain observations v. Sequences
of different lengths were generated spanning from 103 to 105. We
ran both the Baum-Welch algorithm and our algorithm on the dataset
and the results are summarized in Figure 3. We can see that the pro-
posed algorithm recovers the observed probability distributions cor-
rectly as shown in the right panel and the log-likelihoods obtained
are marginally superior to the log-likelihoods from Baum-Welch.

Our results clearly demonstrate the utility of the approach com-
pared to the Baum-Welch algorithm. We obtain significant advan-
tages in time-complexity without trading off accuracy of the results.

We finally describe a third experiment to illustrate another aspect
of the algorithm that cannot be handled by Baum-Welch algorithm.
Consider a scenario where instead of observing discrete labels, we
are given a probability of having observed each label in the vocab-
ulary. In other words, at every step, we observe a vector of proba-
bilities. Let X represent this matrix over several timesteps. We can
obtain the observed transition matrix C by taking the matrix prod-
uct between X and XT where we shift the columns of the matrix
by one-step before transposing. Once we have the matrix C, we can
proceed as before by applying our algorithm. However, we cannot
apply Baum-Welch algorithm to data of this type. To illustrate this,
we generated a synthetic dataset of 400 vectors where the vectors al-
ternate between one of two profiles every 50 steps. This matrix X is
shown on Panel (a) of Figure 4. 98% of the transitions are from one
profile to the same profile while the profiles switch in 2% of the tran-
sitions. Panel (b) shows the observed transition matrix C obtained
from X. Panels (c) and (d) show the observed probability distribu-
tions and the transition matrix respectively obtained from running
our algorithm on C. As we can see, the observed emission probabil-
ities correspond to the vectors present in X and the transition matrix
correctly reflect the transitions in X.
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Fig. 4. Illustration of our algorithm applied to a sequence of vectors (Panel (a)). Our algorithm is applied on the observed transition matrix (Panel (b)) that is
derived from the input. The learned emission probability distributions (Panel (c)) and transition matrix (panel (d)) are also shown.

6. CONCLUSIONS

We have proposed a novel algorithm to train the parameters of a dis-
crete Hidden Markov Model. Instead of the given data sequence, we
use an alternate representation of transition counts that is more con-
cise. We described the generative model used and derived equations
for parameter estimation. We presented the algorithm and described
the time-complexity. We conducted experiments on synthetic data
and compared our results with results from implementations of the
Baum-Welch algorithm. The results demonstrate the effectiveness of
the proposed approach and speed gains one can obtain. The simplic-
ity, accuracy and efficiency of the proposed algorithm makes it appli-
cable in a wide range of scenarios and in contexts where traditional
methods are too cumbersome (large sequence lengths and multiple
sequences). In future work, we will extend this work to handle con-
tinuous observations and generalize the framework to handle blocks
of arbitrary sizes instead of pairs.
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8. APPENDIX: PARAMETER ESTIMATION

In this appendix, we derive update equations for parameters of the model
given by equation (1) using EM algorithm. For the E-step, we obtain the a
posteriori probability for latent variables Sk and Sl as shown in equation (2).

In the M-step, we maximize the expected complete data log-likelihood.
Let Λ represent the set of parameters of the model, i.e. Λ = {A,B}. The
expected log-likelihood can be written as L = ES̄|v̄;Λ logP (S̄, v̄), where
S̄ and v̄ represent the set of all draws of the hidden state pairs (Sk, Sl) and
label pairs (vi, vj) respectively, and

P (S̄, v̄) ∝
∏
d

P (Skd
, Sld , vid , vjd ) =

∏
d

bkd
(id) · ākdld · bld (jd).

In the above equation, the subscript d indicates the d-th draw where hidden
state pair (Skd

, Sld ) and label pair (vid , vjd ) are picked. Now, we expand
the log-likelihood as

L = ES̄|v̄;Λ
∑
d

logP (Skd
, Sld , vid , vjd )

=
∑
d

E(Skd
,Sld

)|(vid ,vjd
);Λ log

(
bkd

(id) · ākdld · bld (jd)
)

=
∑
d

N∑
k=1

N∑
l=1

Pklidjd log
(
bk(id) · ākl · bl(jd)

)
.

Changing the summation over draws d to a summation over labels by ac-
counting for how many times each label-pair occurred (entries of C), we can
write L as

L =
M∑
i=1

M∑
j=1

cij

N∑
k=1

N∑
l=1

Pklij

(
log bk(i) + log ākl + log bl(j)

)
. (4)

In order to take care of the normalization constraints, the above equation must
be augmented by appropriate Lagrange multipliers τk and ρk as follows,

Q = L+
N∑

k=1

τk

(
1−

M∑
i=1

bk(i)
)
+ ρ

(
1−

N∑
k=1

N∑
l=1

ākl

)
. (5)

Maximizing Q with respect to ākl and bk(i) leads to the following set of
equations:

M∑
i=1

M∑
j=1

cijPklij = ρākl, (6)

M∑
j=1

cij

N∑
l=1

Pklij +
M∑
i=1

cij

N∑
k=1

Pklij = τkbk(i). (7)

Using the fact that
∑N

k=1

∑N
l=1 ākl = 1 and

∑M
i=1 bk(i) = 1, we can

eliminate the Lagrange multipliers from the above equations to obtain the
M-step re-estimation equations as shown in equations (3). akl can be com-
puted from ākl using the relation akl = ākl/(

∑N
l=1 ākl). The final update

equations are given by equations (2) and (3) and iterating through them is
guaranteed to provide converging estimates of the parameters.


